Lecture Notes on Topology for MAT3500/4500 Following J. R. Munkres’ Textbook

Lecture Notes on Topology for MAT3500/4500 Following J. R. Munkres’ Textbook

Lecture Notes on Topology for MAT3500/4500 following J. R. Munkres' textbook John Rognes November 21st 2018 Contents Introduction v 1 Set Theory and Logic 1 1.1 (x1) Fundamental Concepts . 1 1.1.1 Membership . 1 1.1.2 Inclusion and equality . 2 1.1.3 Intersection and union . 2 1.1.4 Difference and complement . 2 1.1.5 Collections of sets, the power set . 3 1.1.6 Arbitrary intersections and unions . 3 1.1.7 Cartesian products . 4 1.2 (x2) Functions . 4 1.2.1 Domain, range and graph . 4 1.2.2 Image, restriction, corestriction . 5 1.2.3 Injective, surjective, bijective . 5 1.2.4 Composition . 6 1.2.5 Images of subsets . 6 1.2.6 Preimages of subsets . 7 1.3 (x5) Cartesian Products . 8 1.3.1 Indexed families . 8 1.3.2 General intersections and unions . 8 1.3.3 Finite cartesian products . 9 1.3.4 Countable cartesian products . 9 1.3.5 General cartesian products . 10 1.4 (x6) Finite Sets . 10 1.4.1 Cardinality . 10 1.4.2 Subsets . 11 1.4.3 Injections and surjections . 12 2 Topological Spaces and Continuous Functions 13 2.1 (x12) Topological Spaces . 13 2.1.1 Open sets . 13 2.1.2 Discrete and trivial topologies . 13 2.1.3 Finite topological spaces . 14 2.1.4 The cofinite topology . 15 2.1.5 Coarser and finer topologies . 16 2.1.6 Metric spaces . 17 2.2 (x13) Basis for a Topology . 18 2.2.1 Bases . 18 i 2.2.2 Comparing topologies using bases . 21 2.2.3 Subbases . 22 2.3 (x15) The Product Topology on X × Y ........................ 22 2.3.1 A basis for the product topology . 22 2.3.2 A subbasis for the product topology . 23 2.4 (x16) The Subspace Topology . 24 2.4.1 Subspaces . 24 2.4.2 Products vs. subspaces . 26 2.5 (x17) Closed Sets and Limit Points . 26 2.5.1 Closed subsets . 26 2.5.2 Closure and interior . 28 2.5.3 Closure in subspaces . 29 2.5.4 Neighborhoods . 29 2.5.5 Limit points . 30 2.5.6 Convergence to a limit . 30 2.5.7 Hausdorff spaces . 31 2.5.8 Uniqueness of limits in Hausdorff spaces . 31 2.5.9 Closed sets and limits points in Hausdorff spaces . 31 2.5.10 Products of Hausdorff spaces . 32 2.6 (x18) Continuous Functions . 32 2.6.1 Continuity in terms of preimages . 32 2.6.2 Continuity at a point . 33 2.6.3 Continuity in terms of closed sets and the closure . 33 2.6.4 Homeomorphism = topological equivalence . 34 2.6.5 Examples . 35 2.6.6 Nonexamples . 37 2.6.7 Constructing maps . 37 2.6.8 Maps into products . 38 2.6.9 Maps out of products . 39 2.7 (x19) The Product Topology . 41 2.7.1 Pointwise convergence . 43 2.7.2 Properties of general product spaces . 44 2.8 (x20) The Metric Topology . 44 2.8.1 Bounded metrics . 44 2.8.2 Euclidean n-space . 45 2.8.3 Infinite dimensional Euclidean space . 45 2.9 (x21) The Metric Topology (continued) . 47 2.10 (x22) The Quotient Topology . 48 2.10.1 Equivalence relations . 48 2.10.2 Quotient maps . 49 2.10.3 Open and closed maps . 50 3 Connectedness and Compactness 55 3.1 (x23) Connected Spaces . 55 3.1.1 Sums of spaces . 55 3.1.2 Separations . 55 3.1.3 Constructions with connected spaces . 56 3.2 (x24) Connected Subspaces of the Real Line . 58 3.2.1 Path connected spaces . 59 ii 3.3 (x25) Components and Local Connectedness . 60 3.3.1 Path components . 61 3.3.2 Locally connected spaces . 61 3.3.3 The Jordan curve theorem . 62 3.3.4 Gaussian elimination . 62 3.4 (x26) Compact Spaces . 64 3.4.1 Open covers and finite subcovers . 64 3.4.2 Compact subspaces of Hausdorff spaces . 66 3.4.3 Finite products of compact spaces . 67 3.4.4 The finite intersection property . 68 3.5 (x27) Compact Subspaces of the Real Line . 69 3.5.1 The Lebesgue number . 70 3.5.2 Uniform continuity . 71 3.5.3 The Gram{Schmidt process . 71 3.6 (x28) Limit Point Compactness . 72 3.7 (x29) Local Compactness . 74 3.7.1 The one-point compactification . 75 3.7.2 The local nature of local compactness . 77 4 Countability and Separation Axioms 78 4.1 (x30) The Countability Axioms . 78 4.1.1 First-countable spaces . 79 4.1.2 Second-countable spaces . 80 4.1.3 Countable dense subsets . 80 4.2 (x31) The Separation Axioms . 81 4.3 (x32) (More About) Normal Spaces . 83 4.4 (x33) The Urysohn Lemma . 84 4.5 The Hilbert Cube . ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    133 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us