Niels Bohr “Gott Würfelt Nicht (God Does Not Play Dice).” - Albert Einstein ”Einstein, Stop Telling God What to Do!” - Niels Bohr Key Persons of Quantum Mechanics 5

Niels Bohr “Gott Würfelt Nicht (God Does Not Play Dice).” - Albert Einstein ”Einstein, Stop Telling God What to Do!” - Niels Bohr Key Persons of Quantum Mechanics 5

The Relativistic Quantum World A lecture series on Relativity Theory and Quantum Mechanics Marcel Merk University of Maastricht, Sept 16 – Oct 14, 2020 The Relativistic Quantum World 1 Lecture 1: The Principle of Relativity and the Speed of Light Sept. 16: Lecture 2: Time Dilation and Lorentz Contraction Lecture 3: The Lorentz Transformation and Paradoxes Relativity Sept. 23: Lecture 4: General Relativity and Gravitational Waves Lecture 5: The Early Quantum Theory Sept. 30: Lecture 6: Feynman’s Double Slit Experiment Oct. 7: Lecture 7: Wheeler’s Delayed Choice and Schrodinger’s Cat Quantum Mechanics Lecture 8: Quantum Reality and the EPR Paradox Lecture 9: The Standard Model and Antimatter Oct. 14: Lecture 10: The Large Hadron Collider Model Standard Lecture notes, written for this course, are available: www.nikhef.nl/~i93/Teaching/ Prerequisite for the course: High school level physics & mathematics. Relativity Theory 2 Special Relativity General Relativity All observers moving in inertial frames: • A free falling person is also inertial frame, • Have identical laws of physics, • Acceleration and gravitation are equivalent: • Observe the same speed of light: c. Inertial mass = gravitational mass Consequences: Consequences: • Simultaneity is not the same for everyone, Space-time is curved: • Distances shrink, time slows down at • Light bends around a massive object, high speed, • Time slows down and space shrinks • Velocities do not add-up as expected. in gravitational fields, • Gravitational radiation exists. Relativity and Quantum Mechanics 3 Classical Mechanics Quantum Mechanics Smaller Sizes (ħ) Higher Speed Newton Bohr Classical mechanics is not “wrong”. It is limited to macroscopic objects and moderate velocities. ( c ) Dirac Feynman Einstein Relativity Theory Quantum Field Theory 4 Lecture 5 The Early Quantum Theory “If Quantum Mechanics hasn’t profoundly shocked you, you haven’t understood it yet.” - Niels Bohr “Gott würfelt nicht (God does not play dice).” - Albert Einstein ”Einstein, stop telling God what to do!” - Niels Bohr Key Persons of Quantum Mechanics 5 Niels Bohr Erwin Schrodinger Werner Heisenberg Paul Dirac Max Born Niels Bohr: Nestor of the ”Copenhagen Interpretation” Erwin Schrödinger: Inventor of the quantum mechanical wave equation Werner Heisenberg: Inventor of the uncertainty relation and “matrix mechanics” Paul Dirac: Inventor of relativistic wave equation: Antimatter! Max Born: Inventor of the probability interpretation of the wave function We will focus of the Copenhagen Interpretation and work with the concept of Schrödinger’s wave-function: � Deterministic Universe 6 Mechanics Laws of Newton: 1. The law of inertia: a body in rest moves with a constant speed 2. The law of force and acceleration: F= m a 3. The law: Action = - Reaction “Principia” (1687) Isaac Newton (1642 – 1727) • Classical Mechanics leads to a deterministic universe. - From exact initial conditions future can be predicted. • Quantum mechanics introduces a fundamental element of chance in the laws of nature: Planck’s constant: ℎ. - Quantum mechanics only makes statistical predictions. The Nature of Light 7 Isaac Newton (1642 – 1727): Light is a stream of particles. Christiaan Huygens (1629 – 1695): Light consists of waves. Thomas Young (1773 – 1829): Interference observed: Light is waves! Isaac Newton Christiaan Huygens Newton Huygens Thomas Young Waves & Interference : water, sound, light 8 Principle of a wave Water: Interference pattern: � = �⁄� � = 1⁄� Sound: Active noise cancellation: Light: Thomas Young experiment: light + light can give darkness! Interference with Water Waves 9 Interfering Waves 10 Double slit experiment: 11 Particle nature: Quantized Light Max Planck (1858 – 1947) “UV catastrophe” in Black Body radiation spectrum: If you heat a body it emits radiation. Classical thermodynamics predicts the amount of light at very short wavelength to be infinite! Paul Ehrenfest Planck invented an ad-hoc solution: For some reason material emitted light in “packages”. h = 6.62 ×10-34 Js Nobel prize 1918 Classical theory: There are more short wavelength “oscillation modes” of atoms than large wavelength “oscillation modes”. Quantum theory: Light of high frequency (small wavelength) requires more energy: E = h f (h = Planck’s constant) Photoelectric Effect 12 Photoelectric effect: light Light kicks out electron with E = h f (Independent on light intensity!) electrons Light consists of quanta. (Nobelprize 1921) Wave: � = ℎ� = ℎ�⁄� à � = ℎ�⁄� Albert Einstein Momentum: � = �� = �� = �⁄� à � = �� It follows that: � = ℎ⁄� ℎ �* − � = 1 − cos � �-� Compton Scattering: “Playing billiards” with light quanta and electron electrons. light Light behaves as a particle with: λ = h / p (Nobelprize 1927) Arthur Compton Photoelectric Effect 13 Photoelectric effect: light Light kicks out electron with E = h f (Independent on light intensity!) electrons Light consists of quanta. (Nobelprize 1921) Wave: � = ℎ� = ℎ�⁄� à � = ℎ�⁄� Albert Einstein Momentum: � = �� = �� = �⁄� à � = �� It follows that: � = ℎ⁄� ℎ �* − � = 1 − cos � �-� Compton Scattering: “Playing billiards” with light quanta and electron electrons. light Light behaves as a particle with: λ = h / p (Nobelprize 1927) Arthur Compton 14 Matter Waves 15 Louis de Broglie - PhD Thesis(!) 1924 (Nobel prize 1929): If light are particles incorporated in a wave, it suggests that particles (electrons) “are carried” by waves. Original idea: a physical wave è Quantum mechanics: probability wave! Particle wavelength: � = ℎ⁄� à � = ℎ⁄ �� Louis de Broglie Wavelength visible light: graphene 400 – 700 nm Use h= 6.62 × 10-34 Js to calculate: • Wavelength electron with v = 0.1 c: 0.024 nm • Wavelength of a fly (m = 0.01 gram, v = 10 m/s): 0.0000000000000000000062 nm Matter Waves 16 Louis de Broglie - PhD Thesis(!) 1924 (Nobel prize 1929): If light are particles incorporated in a wave, it suggests that particles (electrons) “are carried” by waves. Original idea: a physical wave è Quantum mechanics: probability wave! Particle wavelength: ELECTRON� = ℎ⁄� à � = ℎ⁄ �� Louis de Broglie Wavelength visible light: graphene 400 – 700 nm Use h= 6.62 × 10-34 Js to calculate: • Wavelength electron with v = 0.1 c: 0.024 nm • Wavelength of a fly (m = 0.01 gram, v = 10 m/s): 0.0000000000000000000062 nm 17 The Quantum Atom of Niels Bohr 18 The classical Atom is unstable! Expect: t < 10-10 s Niels Bohr: Atom is only stable for specific orbits: “energy levels”. An electron can jump from a high to Niels Bohr lower level by emitting a light quantum 1885 - 1962 with corresponding energy difference. Balmer spectrum of wavelengths: Schrödinger: Bohr atom and de Broglie waves 19 If orbit length “fits”: 2π r = n λ with n = 1, 2, 3, … The wave positively interferes with itself! n = 1 è Stable orbits! Erwin Schrödinger Periodic Table of the Elements de Broglie: λ = h / p L = r p Energy levels explained L = r h/ λ à atom explained L = r n h/ (2 π r) Outer shell electrons L = n h/(2π) = n ħ à “chemistry explained” (L = angular momentum) Not yet explained 20 !"#$%#&'()'*$!+,-#$./$0*(1*"$2"'345 !"#" $%%& .89#&3 6+ ' 7" $ ;'+A#( !(%% %(!$ 6-#9$6+&'(*" 7'-*"(@+9 %#&9()$K'*+&) !)"& !)#! !)"* :+-1$2"'345$;'31'--#&'#3$<=*1'>#? $%%) !)!& F+*+&)' 6" $ 0& + 63 * =) $ =& $ !(!% $('% !()% ,-.( %(%$ !(!& 2@$6&+91$V$0(93 6-#9A-+33+BA" 01&+1"@'-- 6-#9-(33'# 21-6( =,"+'99$;#+&A =&),#A !)$& !")* !)#" !)") !)#) !)'* !#"* ;' /.011- $%%+ !##' !))! H)&'9A1(9 234( C) $ 01 + 6) * 6D + 6# * 6/ * 05 $ ;'31'--#&5GF&+9) E# $ =9 $ F& + FB&9$01#8+&1 !('% $(+% '("% !(+% $(&% '(+% %(*% %(*51 %("& !(&% 6-#9*+)+@ 01&+1"'3-+ 6-#9)B--+9 6-#9$0D#5 6-#9$H-A'9 6-#9/+&*-+3 0D#53')# E(*"$H8# =&&+9 F&B'*"-+))'*" I9'1#)$0D'&'13 $%%& !)'# !)"! !)$' !)'" !)#" !)$* !)#) !)$+ $%!' !)'# !""& $%%+ !"#) !""# J91S$F#>#&+A# ;/ $ ;& + J9 + :( * 0, $ F' + F3 * 79 + F@ * 2, $ ;+ + H) $ !B $ 7' $ !@ + F8 ' %(%" !(+% $(#% '()% $(&% $()% '(&% !(+% $()% %(!$ '("% %(%# %('+ %("& !(%% $(%% 0B91(&5 ;+/1@'-- 6-#9)&(9+*" J9*"A(8#& :(&1-+*" 0D#5,B&9 F#9&'+*" F#9&'99#3 79(*4+9)( F+-@#9+*" 2(-/,B&9 ;+-@(&# H)&+)(B& 6-#91B&&#1 6-#9A5-# !(,#&@(&5 F(8@(&# !)!" !)#' !)#* !##% !)#! !)#" !)$* !)*# !#*+ !)#) !)$* !)!" !)+& !)'' !)'$ !))& !)!* EL:M F) $ 7) $ =B + 7> # CA + :& + =, + C& + !1 + F* $ %B $ !# * K- $ 65 ' 6* $ 0* $ EA + F#9&'+*" %($& !("& '(%% +()% +(%% '('% '("% $($% '('% %(&% !()% +(+% %(+& !(!% %("& !(&% $('& F-+)9(*" 79(*4)"B =B-1@(&# 7'9'9>'# C&+'A#--+*"'# 6-#9$:(&+5 =,#&-(B& C&+AA+9@(&# !(@'91(B- F#9&(@+*" %B-1#9#5 !#+9'9'*" K(5+-$E(*"9+A+& 6-#9A(59# 6-#9$0*(1'+ 0*+D+ E+A+>B-'9 F#+@ !)$' !)$+ !)#" !)#$ !)") !#"! !#"& !)$+ !#"' !)!% !"#% !)!$ !)#" !#+# !)$) !)!% !))! E(*"$E(@(9) =B ' N# + !* * F+ !! 6& !% :+ * =- + C+ * F- * 6, + F, $ K, + ;" $ !, + 0D ' OB + F9 + !("& $('% +($% &(*% &(*% '(+& +(%% '(+% +(%% +($% $(%% +(%% $($% $("% %("& $($% $(&% =9AB3$;B9)## =B*"#91(3"+9 N#11#&*+'&9 6-#91+B*"#&3 F+->#9'# 6-#9&(1"#3 :+99(*"@(&# =--1P+PF"+'99# C+&)"B F&+#>+- 6-#9,B&A'# F+-,-+'& K(5+-$F&+*4-+ ;+-8"'99'# !B--',+&)'9# 0D&'9A,+94 OB&+ FB99+"+,"+'9 !)'" !#*$ !#"+ !)#* !)+% !)$! !#*" !)#* !#** !)$+ !#*" !)') !"#) !#*& !"#+ !"#) !)!% :'1*"#--Q3 64 $ :) & =4 ) ;B * 6A !% E' * =* + !) * !> * :' * C5 * 6( * F" + ;# + ., $ MD + ED " C+@D+&' $(&% '('+ &(%% &()% &(#% '("& +($% +(%% +(%% &(&% +()% &(%% $(&% '(%% %(") $(&% '('% 6-#94'9*"'# :+*)B// =B*"&('34 ;B//1(89 6-#9$6&+91 E'948(() 6-#9+--+*"'# !+@)"B !+@9+>B-'9 :'--1(9)B// C-59#-'3" 6-#9$.&) F-+'&$=1"(- ;#+931(9 .,+9 M'A"-+9)$%+&4 E+D"&(+'A R'44+ $%%" !)#) !#&" !))* !)$+ !)#+ !)&$ !#&) !)'" $%%# !)+' !)#" !)#* !#*& !)$& !)'% !)+* E+$:+&1'9'UB+'3#

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    33 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us