Uva-DARE (Digital Academic Repository)

Uva-DARE (Digital Academic Repository)

UvA-DARE (Digital Academic Repository) Regularity properties and definability in the real number continuum: idealized forcing, polarized partitions, Hausdorff gaps and mad families in the projective hierarchy Khomskii, Y.D. Publication date 2012 Link to publication Citation for published version (APA): Khomskii, Y. D. (2012). Regularity properties and definability in the real number continuum: idealized forcing, polarized partitions, Hausdorff gaps and mad families in the projective hierarchy. Institute for Logic, Language and Computation. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:30 Sep 2021 Bibliography [Abr10] Uri Abraham. Proper forcing. In Matthew Foreman and Akihiro Kanamori, editors, Handbook of Set Theory, pages 333{394. Springer, Dordrecht, 2010. [Ale16] Pavel S. Aleksandrov. Sur la puissance des ensembles mesurables. C. R. Acad. Sci. Paris, 162:323{325, 1916. [Bai99] Ren´e-LouisBaire. Sur les fonctions de variables r´eelles. Ann. Mat. Pura Appl., 3(3):1{123, 1899. [Bar84] Tomek Bartoszy´nski.Additivity of measure implies additivity of cat- egory. Trans. Amer. Math. Soc., 281(1):209{213, 1984. [BD85] James E. Baumgartner and Peter Dordal. Adjoining dominating func- tions. J. Symbolic Logic, 50(1):94{101, 1985. [Bel85] John L. Bell. Boolean-valued models and independence proofs in set theory, volume 12 of Oxford Logic Guides. The Clarendon Press Oxford University Press, New York, second edition, 1985. With a foreword by Dana Scott. [Ber08] Felix Bernstein. Zur Theorie der trigonometrischen Reihen. Ber. Verh. k. S¨achs.Ges. Wiss. Leipzig, Math.-Phys. Kl., 60:325{338, 1908. [BHL05] J¨orgBrendle, Lorenz Halbeisen, and Benedikt L¨owe. Silver measur- ability and its relation to other regularity properties. Math. Proc. Cambridge Philos. Soc., 138(1):135{149, 2005. [BHS95] J¨orgBrendle, Greg Hjorth, and Otmar Spinas. Regularity properties for dominating projective sets. Ann. Pure Appl. Logic, 72(3):291{307, 1995. 125 126 Bibliography [BJ95] Tomek Bartoszy´nskiand Haim Judah. Set Theory, On the Structure of the Real Line. A K Peters, 1995. [BL99] J¨orgBrendle and Benedikt L¨owe. Solovay-type characterizations for forcing-algebras. J. Symbolic Logic, 64(3):1307{1323, 1999. [BL11] J¨orgBrendle and Benedikt L¨owe. Eventually different functions and inaccessible cardinals. J. Math. Soc. Japan, 63(1):137{151, 2011. [Bla10] Andreas Blass. Combinatorial cardinal characteristics of the contin- uum. In Matthew Foreman and Akihiro Kanamori, editors, Handbook of Set Theory, pages 395{489. Springer, Dordrecht, 2010. [Bre09] J¨orgBrendle. Forcing and the structure of the real line: the bogot´a lectures. Lecture notes, 2009. [Bre10] J¨orgBrendle. Aspects of iterated forcing. Tutorial at Winter School in Abstract Analysis, section Set Theory & Topology, January/February 2010. [BY05] J¨orgBrendle and Shunsuke Yatabe. Forcing indestructibility of MAD families. Ann. Pure Appl. Logic, 132(2-3):271{312, 2005. [Coh63] Paul Cohen. The independence of the continuum hypothesis. Proc. Nat. Acad. Sci. U.S.A., 50:1143{1148, 1963. [Coh64] Paul J. Cohen. The independence of the continuum hypothesis. II. Proc. Nat. Acad. Sci. U.S.A., 51:105{110, 1964. [Dev84] Keith J. Devlin. Constructibility. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1984. [DPLT01] Carlos A. Di Prisco, Jimena Llopis, and Stevo Todorˇcevi´c.Borel parti- tions of products of finite sets and the Ackermann function. J. Combin. Theory Ser. A, 93(2):333{349, 2001. [DPT03] Carlos A. Di Prisco and Stevo Todorˇcevi´c.Souslin partitions of prod- ucts of finite sets. Adv. Math., 176(1):145{173, 2003. [Ell74] Erik Ellentuck. A new proof that analytic sets are Ramsey. J. Symbolic Logic, 39:163{165, 1974. [Fen93] Qi Feng. Homogeneity for open partitions of pairs of reals. Trans. Amer. Math. Soc., 339(2):659{684, 1993. [FT10] Vera Fischer and Asger T¨ornquist. A co-analytic maximal set of or- thogonal measures. J. Symbolic Logic, 75(4):1403{1414, 2010. Bibliography 127 [FZ10] Sy-David Friedman and Lyubomyr Zdomskyy. Projective mad fami- lies. Ann. Pure Appl. Logic, 161(12):1581{1587, 2010. [G¨od38] Kurt G¨odel.The consistency of the axiom of choice and of the gener- alized continuum-hypothesis. Proc. Nat. Acad. Sci. USA, 24:556{557, 1938. [GRSS95] Martin Goldstern, Miroslav Repick´y, Saharon Shelah, and Otmar Spinas. On tree ideals. Proc. Amer. Math. Soc., 123(5):1573{1581, 1995. [GS53] David Gale and Frank M. Stewart. Infinite games with perfect in- formation. In Contributions to the theory of games, vol. 2, Annals of Mathematics Studies, no. 28, pages 245{266. Princeton University Press, Princeton, N. J., 1953. [Had94] Jacques Hadamard. Sur les caract`eresde convergence des s´eries`ater- mes positifs et sur les fonctions ind´efiniment croissantes. Acta Math., 18:319{336, 1894. [Hal03] Lorenz Halbeisen. Making doughnuts of Cohen reals. Math. Logic Q., 49(2):173{178, 2003. [Hau16] Felix Hausdorff. Die M¨achtigkeit der Borelschen Mengen. Math. Ann., 77(3):430{437, 1916. [Hau36] Felix Hausdorff. Summen von @1 Mengen. Fund. Math., 26:241{255, 1936. [HGF03] Michael Hruˇs´akand Salvador Garc´ıaFerreira. Ordering MAD families a la Kat´etov. J. Symbolic Logic, 68(4):1337{1353, 2003. [HKL90] Leo A. Harrington, Alexander S. Kechris, and Alain Louveau. A Glimm-Effros dichotomy for Borel equivalence relations. J. Amer. Math. Soc., 3(4):903{928, 1990. [Hru01] Michael Hruˇs´ak. MAD families and the rationals. Comment. Math. Univ. Carolin., 42(2):345{352, 2001. 1 [Iho88] Jaime I. Ihoda. Σ2-sets of reals. J. Symbolic Logic, 53(2):636{642, 1988. [Ike10a] Daisuke Ikegami. Forcing absoluteness and regularity properties. Ann. Pure Appl. Logic, 161(7):879{894, 2010. [Ike10b] Daisuke Ikegami. Games in Set Theory and Logic. PhD thesis, Uni- versity of Amsterdam, 2010. ILLC Dissertations DS-2010-04. 128 Bibliography 1 [IS89] Jaime I. Ihoda and Saharon Shelah. ∆2-sets of reals. Ann. Pure Appl. Logic, 42(3):207{223, 1989. [Jec03] Thomas Jech. Set theory. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. The third millennium edition, revised and expanded. [Kan03] Akihiro Kanamori. The higher infinite. Large cardinals in set theory from their beginnings. Springer Monographs in Mathematics. Springer- Verlag, Berlin, second edition, 2003. [Kas83] Ilias G. Kastanas. On the Ramsey property for sets of reals. J. Sym- bolic Logic, 48(4):1035{1045 (1984), 1983. [Kec77] Alexander S. Kechris. On a notion of smallness for subsets of the Baire space. Trans. Amer. Math. Soc., 229:191{207, 1977. [Kec95] Alexander S. Kechris. Classical descriptive set theory, volume 156 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995. [Kho09] Yurii Khomskii. A general setting for the pointwise investigation of determinacy. In Logic and its applications, volume 5378 of Lecture Notes in Comput. Sci., pages 185{195. Springer, Berlin, 2009. [KS09] Jakob Kellner and Saharon Shelah. Decisive creatures and large con- tinuum. J. Symbolic Logic, 74(1):73{104, 2009. [KSZ08] Bart Kastermans, Juris Stepr¯ans,and Yi Zhang. Analytic and co- analytic families of almost disjoint functions. J. Symbolic Logic, 73(4):1158{1172, 2008. [Kun80] Kenneth Kunen. Set theory. An introduction to independence proofs, volume 102 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, 1980. [Kur01] MiloˇsS. Kurili´c.Cohen-stable families of subsets of integers. J. Sym- bolic Logic, 66(1):257{270, 2001. [Leb02] Henri Lebesgue. Int´egrale,longueur, aire. Ann. Mat. Pura Appl., 3(7):231{359, 1902. [L¨ow98] Benedikt L¨owe. Uniform unfolding and analytic measurability. Arch. Math. Logic, 37(8):505{520, 1998. [Luz25] Nikolai N. Luzin. Sur un probl`emede M. Emile Borel et les ensembles projectifs de M. Henri Lebesgue; les ensembles analytiques. C. R. Acad. Sci. Paris, 180:1572{1574, 1925. Bibliography 129 [Man70] Richard Mansfield. Perfect subsets of definable sets of real numbers. Pacific J. Math., 35:451{457, 1970. [Mar75] Donald A. Martin. Borel determinacy. Ann. of Math. (2), 102(2):363{ 371, 1975. [Mat77] Adrian R. D. Mathias. Happy families. Ann. Math. Logic, 12(1):59{ 111, 1977. [Mil89] Arnold W. Miller. Infinite combinatorics and definability. Ann. Pure Appl. Logic, 41(2):179{203, 1989. [Mos80] Yiannis N. Moschovakis. Descriptive set theory, volume 100 of Studies in Logic and the Foundations of Mathematics. North-Holland Publish- ing Co., Amsterdam, 1980. [MS62] Jan Mycielski and H. Steinhaus. A mathematical axiom contradicting the axiom of choice. Bull. Acad. Polon. Sci. S´er.Sci. Math. Astronom. Phys., 10:1{3, 1962. [MS89] Donald A. Martin and John R. Steel. A proof of projective determi- nacy. J. Amer. Math. Soc., 2(1):71{125, 1989. [Pri76] Karel Prikry. Determinateness and partitions. Proc. Amer. Math. Soc., 54:303{306, 1976. [Rag09] Dilip Raghavan. Maximal almost disjoint families of functions. Fund. Math., 204(3):241{282, 2009. [Ram29] Frank P. Ramsey. On a problem of formal logic. Proc. Lond. Math. Soc. (2), 30:264{286, 1929. [RS85] Jean Raisonnier and Jacques Stern. The strength of measurability hypotheses. Israel J. Math., 50(4):337{349, 1985.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    7 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us