
UvA-DARE (Digital Academic Repository) Regularity properties and definability in the real number continuum: idealized forcing, polarized partitions, Hausdorff gaps and mad families in the projective hierarchy Khomskii, Y.D. Publication date 2012 Link to publication Citation for published version (APA): Khomskii, Y. D. (2012). Regularity properties and definability in the real number continuum: idealized forcing, polarized partitions, Hausdorff gaps and mad families in the projective hierarchy. Institute for Logic, Language and Computation. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:30 Sep 2021 Bibliography [Abr10] Uri Abraham. Proper forcing. In Matthew Foreman and Akihiro Kanamori, editors, Handbook of Set Theory, pages 333{394. Springer, Dordrecht, 2010. [Ale16] Pavel S. Aleksandrov. Sur la puissance des ensembles mesurables. C. R. Acad. Sci. Paris, 162:323{325, 1916. [Bai99] Ren´e-LouisBaire. Sur les fonctions de variables r´eelles. Ann. Mat. Pura Appl., 3(3):1{123, 1899. [Bar84] Tomek Bartoszy´nski.Additivity of measure implies additivity of cat- egory. Trans. Amer. Math. Soc., 281(1):209{213, 1984. [BD85] James E. Baumgartner and Peter Dordal. Adjoining dominating func- tions. J. Symbolic Logic, 50(1):94{101, 1985. [Bel85] John L. Bell. Boolean-valued models and independence proofs in set theory, volume 12 of Oxford Logic Guides. The Clarendon Press Oxford University Press, New York, second edition, 1985. With a foreword by Dana Scott. [Ber08] Felix Bernstein. Zur Theorie der trigonometrischen Reihen. Ber. Verh. k. S¨achs.Ges. Wiss. Leipzig, Math.-Phys. Kl., 60:325{338, 1908. [BHL05] J¨orgBrendle, Lorenz Halbeisen, and Benedikt L¨owe. Silver measur- ability and its relation to other regularity properties. Math. Proc. Cambridge Philos. Soc., 138(1):135{149, 2005. [BHS95] J¨orgBrendle, Greg Hjorth, and Otmar Spinas. Regularity properties for dominating projective sets. Ann. Pure Appl. Logic, 72(3):291{307, 1995. 125 126 Bibliography [BJ95] Tomek Bartoszy´nskiand Haim Judah. Set Theory, On the Structure of the Real Line. A K Peters, 1995. [BL99] J¨orgBrendle and Benedikt L¨owe. Solovay-type characterizations for forcing-algebras. J. Symbolic Logic, 64(3):1307{1323, 1999. [BL11] J¨orgBrendle and Benedikt L¨owe. Eventually different functions and inaccessible cardinals. J. Math. Soc. Japan, 63(1):137{151, 2011. [Bla10] Andreas Blass. Combinatorial cardinal characteristics of the contin- uum. In Matthew Foreman and Akihiro Kanamori, editors, Handbook of Set Theory, pages 395{489. Springer, Dordrecht, 2010. [Bre09] J¨orgBrendle. Forcing and the structure of the real line: the bogot´a lectures. Lecture notes, 2009. [Bre10] J¨orgBrendle. Aspects of iterated forcing. Tutorial at Winter School in Abstract Analysis, section Set Theory & Topology, January/February 2010. [BY05] J¨orgBrendle and Shunsuke Yatabe. Forcing indestructibility of MAD families. Ann. Pure Appl. Logic, 132(2-3):271{312, 2005. [Coh63] Paul Cohen. The independence of the continuum hypothesis. Proc. Nat. Acad. Sci. U.S.A., 50:1143{1148, 1963. [Coh64] Paul J. Cohen. The independence of the continuum hypothesis. II. Proc. Nat. Acad. Sci. U.S.A., 51:105{110, 1964. [Dev84] Keith J. Devlin. Constructibility. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1984. [DPLT01] Carlos A. Di Prisco, Jimena Llopis, and Stevo Todorˇcevi´c.Borel parti- tions of products of finite sets and the Ackermann function. J. Combin. Theory Ser. A, 93(2):333{349, 2001. [DPT03] Carlos A. Di Prisco and Stevo Todorˇcevi´c.Souslin partitions of prod- ucts of finite sets. Adv. Math., 176(1):145{173, 2003. [Ell74] Erik Ellentuck. A new proof that analytic sets are Ramsey. J. Symbolic Logic, 39:163{165, 1974. [Fen93] Qi Feng. Homogeneity for open partitions of pairs of reals. Trans. Amer. Math. Soc., 339(2):659{684, 1993. [FT10] Vera Fischer and Asger T¨ornquist. A co-analytic maximal set of or- thogonal measures. J. Symbolic Logic, 75(4):1403{1414, 2010. Bibliography 127 [FZ10] Sy-David Friedman and Lyubomyr Zdomskyy. Projective mad fami- lies. Ann. Pure Appl. Logic, 161(12):1581{1587, 2010. [G¨od38] Kurt G¨odel.The consistency of the axiom of choice and of the gener- alized continuum-hypothesis. Proc. Nat. Acad. Sci. USA, 24:556{557, 1938. [GRSS95] Martin Goldstern, Miroslav Repick´y, Saharon Shelah, and Otmar Spinas. On tree ideals. Proc. Amer. Math. Soc., 123(5):1573{1581, 1995. [GS53] David Gale and Frank M. Stewart. Infinite games with perfect in- formation. In Contributions to the theory of games, vol. 2, Annals of Mathematics Studies, no. 28, pages 245{266. Princeton University Press, Princeton, N. J., 1953. [Had94] Jacques Hadamard. Sur les caract`eresde convergence des s´eries`ater- mes positifs et sur les fonctions ind´efiniment croissantes. Acta Math., 18:319{336, 1894. [Hal03] Lorenz Halbeisen. Making doughnuts of Cohen reals. Math. Logic Q., 49(2):173{178, 2003. [Hau16] Felix Hausdorff. Die M¨achtigkeit der Borelschen Mengen. Math. Ann., 77(3):430{437, 1916. [Hau36] Felix Hausdorff. Summen von @1 Mengen. Fund. Math., 26:241{255, 1936. [HGF03] Michael Hruˇs´akand Salvador Garc´ıaFerreira. Ordering MAD families a la Kat´etov. J. Symbolic Logic, 68(4):1337{1353, 2003. [HKL90] Leo A. Harrington, Alexander S. Kechris, and Alain Louveau. A Glimm-Effros dichotomy for Borel equivalence relations. J. Amer. Math. Soc., 3(4):903{928, 1990. [Hru01] Michael Hruˇs´ak. MAD families and the rationals. Comment. Math. Univ. Carolin., 42(2):345{352, 2001. 1 [Iho88] Jaime I. Ihoda. Σ2-sets of reals. J. Symbolic Logic, 53(2):636{642, 1988. [Ike10a] Daisuke Ikegami. Forcing absoluteness and regularity properties. Ann. Pure Appl. Logic, 161(7):879{894, 2010. [Ike10b] Daisuke Ikegami. Games in Set Theory and Logic. PhD thesis, Uni- versity of Amsterdam, 2010. ILLC Dissertations DS-2010-04. 128 Bibliography 1 [IS89] Jaime I. Ihoda and Saharon Shelah. ∆2-sets of reals. Ann. Pure Appl. Logic, 42(3):207{223, 1989. [Jec03] Thomas Jech. Set theory. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. The third millennium edition, revised and expanded. [Kan03] Akihiro Kanamori. The higher infinite. Large cardinals in set theory from their beginnings. Springer Monographs in Mathematics. Springer- Verlag, Berlin, second edition, 2003. [Kas83] Ilias G. Kastanas. On the Ramsey property for sets of reals. J. Sym- bolic Logic, 48(4):1035{1045 (1984), 1983. [Kec77] Alexander S. Kechris. On a notion of smallness for subsets of the Baire space. Trans. Amer. Math. Soc., 229:191{207, 1977. [Kec95] Alexander S. Kechris. Classical descriptive set theory, volume 156 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995. [Kho09] Yurii Khomskii. A general setting for the pointwise investigation of determinacy. In Logic and its applications, volume 5378 of Lecture Notes in Comput. Sci., pages 185{195. Springer, Berlin, 2009. [KS09] Jakob Kellner and Saharon Shelah. Decisive creatures and large con- tinuum. J. Symbolic Logic, 74(1):73{104, 2009. [KSZ08] Bart Kastermans, Juris Stepr¯ans,and Yi Zhang. Analytic and co- analytic families of almost disjoint functions. J. Symbolic Logic, 73(4):1158{1172, 2008. [Kun80] Kenneth Kunen. Set theory. An introduction to independence proofs, volume 102 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, 1980. [Kur01] MiloˇsS. Kurili´c.Cohen-stable families of subsets of integers. J. Sym- bolic Logic, 66(1):257{270, 2001. [Leb02] Henri Lebesgue. Int´egrale,longueur, aire. Ann. Mat. Pura Appl., 3(7):231{359, 1902. [L¨ow98] Benedikt L¨owe. Uniform unfolding and analytic measurability. Arch. Math. Logic, 37(8):505{520, 1998. [Luz25] Nikolai N. Luzin. Sur un probl`emede M. Emile Borel et les ensembles projectifs de M. Henri Lebesgue; les ensembles analytiques. C. R. Acad. Sci. Paris, 180:1572{1574, 1925. Bibliography 129 [Man70] Richard Mansfield. Perfect subsets of definable sets of real numbers. Pacific J. Math., 35:451{457, 1970. [Mar75] Donald A. Martin. Borel determinacy. Ann. of Math. (2), 102(2):363{ 371, 1975. [Mat77] Adrian R. D. Mathias. Happy families. Ann. Math. Logic, 12(1):59{ 111, 1977. [Mil89] Arnold W. Miller. Infinite combinatorics and definability. Ann. Pure Appl. Logic, 41(2):179{203, 1989. [Mos80] Yiannis N. Moschovakis. Descriptive set theory, volume 100 of Studies in Logic and the Foundations of Mathematics. North-Holland Publish- ing Co., Amsterdam, 1980. [MS62] Jan Mycielski and H. Steinhaus. A mathematical axiom contradicting the axiom of choice. Bull. Acad. Polon. Sci. S´er.Sci. Math. Astronom. Phys., 10:1{3, 1962. [MS89] Donald A. Martin and John R. Steel. A proof of projective determi- nacy. J. Amer. Math. Soc., 2(1):71{125, 1989. [Pri76] Karel Prikry. Determinateness and partitions. Proc. Amer. Math. Soc., 54:303{306, 1976. [Rag09] Dilip Raghavan. Maximal almost disjoint families of functions. Fund. Math., 204(3):241{282, 2009. [Ram29] Frank P. Ramsey. On a problem of formal logic. Proc. Lond. Math. Soc. (2), 30:264{286, 1929. [RS85] Jean Raisonnier and Jacques Stern. The strength of measurability hypotheses. Israel J. Math., 50(4):337{349, 1985.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages7 Page
-
File Size-