
Pre-Calc Name: __________________________ UNIT 4: Conic Sections – REVIEW #2 Date: _________________________ THE CIRCLE STANDARD FORM GENERAL FORM (풙 − 풉)ퟐ + (풚 − 풌)ퟐ = 풓ퟐ 풙ퟐ + 풚ퟐ + 푫풙 + 푬풚 + 푭 = ퟎ Center: (ℎ, 푘) Radius: 푟 Complete the square to get Standard Form THE PARABOLA GENERAL FORM 풙ퟐ + 푫풙 + 푬풚 + 푭 = ퟎ 풚ퟐ + 푫풙 + 푬풚 + 푭 = ퟎ Complete the square to get Standard Form STANDARD FORM (풙 − 풉)ퟐ = ퟒ풑(풚 − 풌) (풚 − 풌)ퟐ = ퟒ풑(풙 − 풉) Vertex: (ℎ, 푘) Opening: Vertex: (ℎ, 푘) Opening: Focus: (ℎ, 푘 + 푝) UP if 푝 is positive Focus: (ℎ + 푝, 푘) RIGHT if 푝 is positive Directrix: 푦 = 푘 − 푝 DOWN if 푝 is negative Directrix: 푥 = ℎ − 푝 LEFT if 푝 is negative THE ELLIPSE GENERAL FORM 푨풙ퟐ + 푪풚ퟐ + 푫풙 + 푬풚 + 푭 = ퟎ where 퐴 ≠ 퐶 Complete the square to get Standard Form (NOTE: Make sure to factor first!) STANDARD FORM (풙 − 풉)ퟐ (풚 − 풌)ퟐ (풙 − 풉)ퟐ (풚 − 풌)ퟐ + = ퟏ + = ퟏ 풂ퟐ 풃ퟐ 풃ퟐ 풂ퟐ Major Axis: 2푎 Foci: ±푐 Major Axis: 2푎 Foci: ±푐 푐2 = 푎2 − 푏2 푐2 = 푎2 − 푏2 Minor Axis: 2푏 Minor Axis: 2푏 푎2 > 푏2 푎2 > 푏2 THE HYPERBOLA GENERAL FORM 푨풙ퟐ − 푪풚ퟐ + 푫풙 + 푬풚 + 푭 = ퟎ where 퐴 ≠ 퐶 푨풚ퟐ − 푪풙ퟐ + 푫풙 + 푬풚 + 푭 = ퟎ where 퐴 ≠ 퐶 Complete the square to get Standard Form (NOTE: Make sure to factor first!) STANDARD FORM (풙 − 풉)ퟐ (풚 − 풌)ퟐ (풚 − 풌)ퟐ (풙 − 풉)ퟐ − = ퟏ − = ퟏ 풂ퟐ 풃ퟐ 풂ퟐ 풃ퟐ 푏 푎 Asymptotes: 푦 − 푘 = ± (푥 − ℎ) Asymptotes: 푦 − 푘 = ± (푥 − ℎ) 푎 푏 Transverse Axis: 2푎 Foci: 푐 Transverse Axis: 2푎 Foci: 푐 Conjugate Axis: 2푏 푐2 = 푎2 + 푏2 Conjugate Axis: 2푏 푐2 = 푎2 + 푏2 푎2 is not necessarily larger than 푏2 푎2 is not necessarily larger than 푏2 Directions: State the conic section of the graph 1.) 16푥2 − 푦2 + 96푥 + 8푦 = −112 Circle Parabola Ellipse Hyperbola 2.) 7푥2 + 3푦2 − 28푥 − 12푦 = −19 Circle Parabola Ellipse Hyperbola 3.) 푥2 + 푦 + 4푥 − 2 = 0 Circle Parabola Ellipse Hyperbola 4.) 푥2 + 푦2 − 푥 + 2푦 − 12 = 0 Circle Parabola Ellipse Hyperbola 5.) 푦2 − 4푥2 − 2푦 − 16푥 + 1 = 0 Circle Parabola Ellipse Hyperbola 6.) 푥2 − 3푦2 + 6푦 + 6푥 = 18 Circle Parabola Ellipse Hyperbola 7.) 푥2 + 3푦2 + 2푥 − 5푦 − 129 = 0 Circle Parabola Ellipse Hyperbola 8.) 2푥2 − 5푥 + 푦 − 19 = 0 Circle Parabola Ellipse Hyperbola 9.) 5푥2 + 2푦2 − 2푥 − 9푦 − 22 = 0 Circle Parabola Ellipse Hyperbola Directions: Write the equation of each graph in standard form. 10.) _________________________ 11.) _________________________ 12.) _________________________ 13.) _________________________ 14.) _________________________ 15.) _________________________ 16.) _________________________ 17.) _________________________ 18.) _________________________ Directions: Find the center and the radius of each circle: 19.) (푥 − 2)2 + 푦2 = 49 20.) (푥 + 3)2 + (푦 − 5)2 = 48 21.) (푥 − 7)2 + (푦 + 2)2 = 45 Center: __________ Center: __________ Center: __________ Radius: __________ Radius: __________ Radius: __________ Directions: Find the vertex, focus, directrix and 풑 value for each parabola. Then graph each parabola. 22.) (푥 + 2)2 = 16(푦 − 1) 23.) (푦 + 1)2 = 8(푥 + 4) 24.) (푥 + 2)2 = −4(푦 − 3) Vertex: _______ Focus: _______ Vertex: _______ Focus: _______ Vertex: _______ Focus: _______ Directrix: _______ 푝 = _______ Directrix: _______ 푝 = _______ Directrix: _______ 푝 = _______ Directions: Change the following from General Form to Standard Form and find the center and radius. 25.) 푥2 + 푦2 − 4푥 + 2푦 + 1 = 0 Standard Form: ________________________________________ Center: ____________ Radius: ____________ Directions: Find the coordinates of the vertex and the focus. Then find the equation of the directrix and sketch a graph for the following parabolas. 26.) (푥 − 2)2 = 12푦 + 36 Vertex: ____________ Focus: ____________ 푝 = ____________ Directrix: ____________ Directions: Convert the general form of the equation of the ellipse into standard form. 27.) 9푦2 + 108푦 + 4푥2 − 56푥 + 484 = 0 Standard form: ______________________________ Directions: Convert the general form of the equation of the hyperbola into standard form. 28.) 25푥2 − 9푦2 − 100푥 − 72푦 − 269 = 0 Standard form: ______________________________ Directions: Find the coordinates of the center, foci, and vertices of the ellipse and the length of the major and minor axis. Then graph the equation. 29.) 25푥2 + 100푥 + 4푦2 + 8푦 + 4 = 0 Center: _______________________ Foci: _______________________ _______________________ Length of major axis: ________________ Length of minor axis: ________________ Major axis vertices: ________________ ________________ Minor axis vertices: _____________ _____________ Directions: Find the coordinates of the center, the foci, and the vertices, the length of the transverse and conjugate axis, and the equations of the asymptotes of the hyperbola. Then graph the equation. 30.) 푦2 − 4푦 − 4푥2 + 40푥 − 100 = 0 Center: ____________________ Foci: ____________________ ____________________ Vertices: ____________________ ____________________ Asymptotes: ____________________ Length of Transverse Axis: _______ Length of Conjugate Axis: _______ .
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages6 Page
-
File Size-