Fourier Optics

Fourier Optics

Fourier Optics Ivan Bazarov Cornell Physics Department / CLASSE Outline • 2D Fourier Transform • 4-f System • Examples of spatial frequency filters • Phase contrast imaging • Matlab FFT 1 Fourier Optics P3330 Exp Optics FA’2016 Properties oF 2D Fourier Transforms Definitions: i2⇡(xfx+yfy ) F (fx,fy)= f(x, y)e− dxdy ZZ i2⇡(xfx+yfy ) f(x, y)= F (fx,fy)e df xdf y ZZ Linearity: ↵f(x, y)+βg(x, y) ↵F (f ,f )+βG(f ,f ) ! x y x y Scaling: x y f , ab F (af ,bf ) a b ! | | x y Shift: ⇣ ⌘ i2⇡(x f +y f ) f(x x ,y y ) F (f ,f )e− 0 x 0 y − 0 − 0 ! x y 2 Fourier Optics P3330 Exp Optics FA’2016 Properties oF 2D Fourier Transforms (contd.) Rotation: R f(x, y) R F (f ,f ) ✓ { } ! ✓ { x y } Convolution: f(˜x, y˜)g(x x,˜ y y˜)dxd˜ y˜ F (f ,f )G(f ,f ) − − ! x y x y ZZ Parseval’s theorem: f(x, y) 2dxdy = F (f ,f ) 2df df | | | x y | x y ZZ ZZ Slice theorem: f(x, y)dy F (f , 0) ! x Z 3 Fourier Optics P3330 Exp Optics FA’2016 4-F System Collimate Mask FT Filter IFT Out FFT FFT FFT FFT Prepare input 1 “4-f system” Input mask f(x, y) x y x y Filter mask F 0 , 0 G 0 , 0 λFFT λFFT λFFT λFFT x y ✓ ◆ ✓ ◆ Take FT F 0 , 0 λFFT λFFT Inverse FT f(˜x, y˜)g(x x,˜ y y˜)dxd˜ y˜ ✓ ◆ − − ZZ 2D object f(x,y) has been filtered with 2D filter with impulse response g(x,y) 4 Fourier Optics P3330 Exp Optics FA’2016 Coordinate system aFter the lens: spatial Frequency converter Thus, the spatial frequency fx is related to coordinate x’ by scaling factor Fl 5 Fourier Optics P3330 Exp Optics FA’2016 •Lecture 4 ECE 4606 Undergraduate Optics Lab –Fourier optics SimpleSimple optical Fourier Fourier Transform transforms Focal length F = 100 mm Laser wavelength λ0 = 632 nm Amplitude cosine, aka diffraction grating 100,000× .0 632 x′ = 200 λ = 200 µm x = 316 µm Rotate object by 45o x′ = y′ 100,000× .0 632 = 282 8. = 223 µm λx = λy = 2 × 200 µm = 282 8. µm 6 Robert R. McLeod, University of Colorado Fourier Optics 49P3330 Exp Optics FA’2016 •Lecture 4 ECE 4606 Undergraduate Optics Lab –ExampleLow pass Filter (sharp cutoFF) Low pass, sharp cutoff REAL SPACE FOURIER SPACE Multiplied by 252.8 µm pinhole Filter cutoff frequency = 1/500 µm-1 Filter cutoff position = 126.4 µm Focal length = 100 mm Laser wavelength = 632 nm All plots show amplitude of E Smoothed, but Gibbs ringing due to sharp filter edges = 7 Robert R. McLeod, University of Colorado Fourier Optics 50 P3330 Exp Optics FA’2016 •Lecture 4 ECE 4606 Undergraduate Optics Lab –ExampleLow pass Filter (smooth cutoFF) Low pass, smooth cutoff REAL SPACE FOURIER SPACE Multiplied by Filter cutoff frequency = 1/500 µm-1 Filter cutoff position = 126.4 µm Edge smoothing = 132 µm Focal length = 100 mm Laser wavelength = 632 nm Now just nicely smoothed = 51 8 Robert R. McLeod, University of Colorado Fourier Optics 51 P3330 Exp Optics FA’2016 •Lecture 4 ECE 4606 Undergraduate Optics Lab –Example High pass (narrow band) High pass, narrowband REAL SPACE FOURIER SPACE Multiplied by 105.2 µm “dot” Filter cutoff frequency = 1/1200 µm-1 Filter cutoff position = 52.6 µm Edge smoothing = 58.2 µm Focal length = 100 mm Laser wavelength = 632 nm Note sharp edges, darkening of large, uniform areas (~DC) = Sharp filter used for clarity 9 Robert R. McLeod, University of Colorado Fourier Optics 52 P3330 Exp Optics FA’2016 •Lecture 4 ECE 4606 Undergraduate Optics Lab –Example High pass (high band) High pass, wideband REAL SPACE FOURIER SPACE Multiplied by Filter cutoff frequency = 1/300 µm-1 Filter cutoff position = 210.6 µm Edge smoothing = 46.6 µm Focal length = 100 mm Laser wavelength = 632 nm Only edges remain. Almost a “line drawing” = 10 Robert R. McLeod, University of Colorado Fourier Optics 53 P3330 Exp Optics FA’2016 •Lecture 4 ECE 4606 Undergraduate Optics Lab Vertical–Example low pass (“smeers” vertically) Vertical low pass REAL SPACE FOURIER SPACE Multiplied by 632 µm horiz. slit Filter cutoff frequency = 1/200 µm-1 Filter cutoff position = 316 µm Edge smoothing = 93.6 µm Focal length = 100 mm Laser wavelength = 632 nm Horizontal lines at edges of eyes gone Vertical lines above nose remain. = 11 Robert R. McLeod, University of Colorado Fourier Optics 54 P3330 Exp Optics FA’2016 •Lecture 4 ECE 4606 Undergraduate Optics Lab Horizontal–Example low pass (“smeers” horizontally) Horizontal low pass REAL SPACE FOURIER SPACE Multiplied by Filter cutoff frequency = 1/200 µm-1 Filter cutoff position = 316 µm 632 Edge smoothing = 93.6 µm µm Focal length = 100 mm vert. Laser wavelength = 632 nm slit Horizontal lines at edges of eyes remain. Vertical lines above nose gone. = 12 Robert R. McLeod, University of Colorado Fourier Optics 55 P3330 Exp Optics FA’2016 •Lecture 4 ECE 4606 Undergraduate Optics Lab –Example SimplerSimpler object objects Low-pass Original High-pass A side note: this is how bandpass filters Low-pass, different cutoff in x&y look like in the frequency (focus) domain. 13 Robert R. McLeod, University of Colorado Fourier Optics 56 P3330 Exp Optics FA’2016 •Lecture 4 ECE 4606 Undergraduate Optics Lab –Phase Phasecontrast contrast imaging Phase contrast REAL SPACE FOURIER SPACE Ansel − jπ e max()Ansel Multiplied by Filter cutoff frequency = 1/5000 µm-1 Filter cutoff position = 12.6 µm Focal length = 100 mm Laser wavelength = 632 nm Knife edge Phase has become amplitude. Zernike won the 1953 Nobel in Physics for this. = 14 Robert R. McLeod, University of Colorado Fourier Optics 57 P3330 Exp Optics FA’2016 Some MATLAB tips: 2D Functions • Create a matrix that evaluates 2D Gaussian: exp(-p/2(x2+y2)/s2) – >>ind = [-32:1:31] / 32; x – >>[x,y] = meshgrid(ind,-1*ind); – >>z = exp(-pi/2*(x.^2+y.^2)/(.25.^2)); – >>imshow(z) – >>colorbar y y’ -1 64x64 matrix x’ 0 31/32 -1 15 Fourier Optics P3330 Exp Optics FA’2016 FFT “splits” low Frequencies 1D Fourier Transform low frequencies (aka shift theorem) 12 – >>l = z(33,:); 10 – >>L = fft(l); 8 6 4 abs (L) 1 2 0.9 0 0.8 10 20 30 40 50 60 0.7 4 0.6 l 0.5 2 0.4 0 0.3 0.2 -2 0.1 (L) phase -4 0 10 20 30 40 50 60 10 20 30 40 50 60 1 33 64 1 33 64 sample # sample # 0 xmax 0 fN/2 fN x [Matlab] 16 Fourier Optics u P3330 Exp Optics FA’2016 Use FFTSHIFT prior to/aFter FFT or FFT2 Use fftshift for 2D functions – >>smiley2 = fftshift(smiley); 17 Fourier Optics P3330 Exp Optics FA’2016 IF your FFT looks jagged… f = zeros(30,30); f(5:24,13:17) = 1; imshow(f,'InitialMagnification','fit') F = fft2(f); F2 = log(abs(F)); imshow(F2,[-1 5],'InitialMagnification','fit'); colormap(jet); colorbar Discrete Fourier Transform Computed Without Padding 18 Fourier Optics P3330 Exp Optics FA’2016 Apply zero-padding! F = fft2(f,256,256); imshow(log(abs(F)),[-1 5]); colormap(jet); colorbar Discrete Fourier Transform With Padding % Apply FFTSHIFT F = fft2(f,256,256);F2 = fftshift(F); imshow(log(abs(F2)),[-1 5]); colormap(jet); colorbar “wrong” low frequency location! Normal FT look 19 Fourier Optics P3330 Exp Optics FA’2016 Links/reFerences http://ecee.colorado.edu/~mcleod/teaching/ugol/lecturenotes/Lecture%2 04%20Fourier%20Optics.pdf http://www.medphysics.wisc.edu/~block/bme530lectures/matlabintro.ppt http://www.mathworks.com/help/images/fourier-transform.html 20 Fourier Optics P3330 Exp Optics FA’2016.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    20 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us