
Fourier Optics Ivan Bazarov Cornell Physics Department / CLASSE Outline • 2D Fourier Transform • 4-f System • Examples of spatial frequency filters • Phase contrast imaging • Matlab FFT 1 Fourier Optics P3330 Exp Optics FA’2016 Properties oF 2D Fourier Transforms Definitions: i2⇡(xfx+yfy ) F (fx,fy)= f(x, y)e− dxdy ZZ i2⇡(xfx+yfy ) f(x, y)= F (fx,fy)e df xdf y ZZ Linearity: ↵f(x, y)+βg(x, y) ↵F (f ,f )+βG(f ,f ) ! x y x y Scaling: x y f , ab F (af ,bf ) a b ! | | x y Shift: ⇣ ⌘ i2⇡(x f +y f ) f(x x ,y y ) F (f ,f )e− 0 x 0 y − 0 − 0 ! x y 2 Fourier Optics P3330 Exp Optics FA’2016 Properties oF 2D Fourier Transforms (contd.) Rotation: R f(x, y) R F (f ,f ) ✓ { } ! ✓ { x y } Convolution: f(˜x, y˜)g(x x,˜ y y˜)dxd˜ y˜ F (f ,f )G(f ,f ) − − ! x y x y ZZ Parseval’s theorem: f(x, y) 2dxdy = F (f ,f ) 2df df | | | x y | x y ZZ ZZ Slice theorem: f(x, y)dy F (f , 0) ! x Z 3 Fourier Optics P3330 Exp Optics FA’2016 4-F System Collimate Mask FT Filter IFT Out FFT FFT FFT FFT Prepare input 1 “4-f system” Input mask f(x, y) x y x y Filter mask F 0 , 0 G 0 , 0 λFFT λFFT λFFT λFFT x y ✓ ◆ ✓ ◆ Take FT F 0 , 0 λFFT λFFT Inverse FT f(˜x, y˜)g(x x,˜ y y˜)dxd˜ y˜ ✓ ◆ − − ZZ 2D object f(x,y) has been filtered with 2D filter with impulse response g(x,y) 4 Fourier Optics P3330 Exp Optics FA’2016 Coordinate system aFter the lens: spatial Frequency converter Thus, the spatial frequency fx is related to coordinate x’ by scaling factor Fl 5 Fourier Optics P3330 Exp Optics FA’2016 •Lecture 4 ECE 4606 Undergraduate Optics Lab –Fourier optics SimpleSimple optical Fourier Fourier Transform transforms Focal length F = 100 mm Laser wavelength λ0 = 632 nm Amplitude cosine, aka diffraction grating 100,000× .0 632 x′ = 200 λ = 200 µm x = 316 µm Rotate object by 45o x′ = y′ 100,000× .0 632 = 282 8. = 223 µm λx = λy = 2 × 200 µm = 282 8. µm 6 Robert R. McLeod, University of Colorado Fourier Optics 49P3330 Exp Optics FA’2016 •Lecture 4 ECE 4606 Undergraduate Optics Lab –ExampleLow pass Filter (sharp cutoFF) Low pass, sharp cutoff REAL SPACE FOURIER SPACE Multiplied by 252.8 µm pinhole Filter cutoff frequency = 1/500 µm-1 Filter cutoff position = 126.4 µm Focal length = 100 mm Laser wavelength = 632 nm All plots show amplitude of E Smoothed, but Gibbs ringing due to sharp filter edges = 7 Robert R. McLeod, University of Colorado Fourier Optics 50 P3330 Exp Optics FA’2016 •Lecture 4 ECE 4606 Undergraduate Optics Lab –ExampleLow pass Filter (smooth cutoFF) Low pass, smooth cutoff REAL SPACE FOURIER SPACE Multiplied by Filter cutoff frequency = 1/500 µm-1 Filter cutoff position = 126.4 µm Edge smoothing = 132 µm Focal length = 100 mm Laser wavelength = 632 nm Now just nicely smoothed = 51 8 Robert R. McLeod, University of Colorado Fourier Optics 51 P3330 Exp Optics FA’2016 •Lecture 4 ECE 4606 Undergraduate Optics Lab –Example High pass (narrow band) High pass, narrowband REAL SPACE FOURIER SPACE Multiplied by 105.2 µm “dot” Filter cutoff frequency = 1/1200 µm-1 Filter cutoff position = 52.6 µm Edge smoothing = 58.2 µm Focal length = 100 mm Laser wavelength = 632 nm Note sharp edges, darkening of large, uniform areas (~DC) = Sharp filter used for clarity 9 Robert R. McLeod, University of Colorado Fourier Optics 52 P3330 Exp Optics FA’2016 •Lecture 4 ECE 4606 Undergraduate Optics Lab –Example High pass (high band) High pass, wideband REAL SPACE FOURIER SPACE Multiplied by Filter cutoff frequency = 1/300 µm-1 Filter cutoff position = 210.6 µm Edge smoothing = 46.6 µm Focal length = 100 mm Laser wavelength = 632 nm Only edges remain. Almost a “line drawing” = 10 Robert R. McLeod, University of Colorado Fourier Optics 53 P3330 Exp Optics FA’2016 •Lecture 4 ECE 4606 Undergraduate Optics Lab Vertical–Example low pass (“smeers” vertically) Vertical low pass REAL SPACE FOURIER SPACE Multiplied by 632 µm horiz. slit Filter cutoff frequency = 1/200 µm-1 Filter cutoff position = 316 µm Edge smoothing = 93.6 µm Focal length = 100 mm Laser wavelength = 632 nm Horizontal lines at edges of eyes gone Vertical lines above nose remain. = 11 Robert R. McLeod, University of Colorado Fourier Optics 54 P3330 Exp Optics FA’2016 •Lecture 4 ECE 4606 Undergraduate Optics Lab Horizontal–Example low pass (“smeers” horizontally) Horizontal low pass REAL SPACE FOURIER SPACE Multiplied by Filter cutoff frequency = 1/200 µm-1 Filter cutoff position = 316 µm 632 Edge smoothing = 93.6 µm µm Focal length = 100 mm vert. Laser wavelength = 632 nm slit Horizontal lines at edges of eyes remain. Vertical lines above nose gone. = 12 Robert R. McLeod, University of Colorado Fourier Optics 55 P3330 Exp Optics FA’2016 •Lecture 4 ECE 4606 Undergraduate Optics Lab –Example SimplerSimpler object objects Low-pass Original High-pass A side note: this is how bandpass filters Low-pass, different cutoff in x&y look like in the frequency (focus) domain. 13 Robert R. McLeod, University of Colorado Fourier Optics 56 P3330 Exp Optics FA’2016 •Lecture 4 ECE 4606 Undergraduate Optics Lab –Phase Phasecontrast contrast imaging Phase contrast REAL SPACE FOURIER SPACE Ansel − jπ e max()Ansel Multiplied by Filter cutoff frequency = 1/5000 µm-1 Filter cutoff position = 12.6 µm Focal length = 100 mm Laser wavelength = 632 nm Knife edge Phase has become amplitude. Zernike won the 1953 Nobel in Physics for this. = 14 Robert R. McLeod, University of Colorado Fourier Optics 57 P3330 Exp Optics FA’2016 Some MATLAB tips: 2D Functions • Create a matrix that evaluates 2D Gaussian: exp(-p/2(x2+y2)/s2) – >>ind = [-32:1:31] / 32; x – >>[x,y] = meshgrid(ind,-1*ind); – >>z = exp(-pi/2*(x.^2+y.^2)/(.25.^2)); – >>imshow(z) – >>colorbar y y’ -1 64x64 matrix x’ 0 31/32 -1 15 Fourier Optics P3330 Exp Optics FA’2016 FFT “splits” low Frequencies 1D Fourier Transform low frequencies (aka shift theorem) 12 – >>l = z(33,:); 10 – >>L = fft(l); 8 6 4 abs (L) 1 2 0.9 0 0.8 10 20 30 40 50 60 0.7 4 0.6 l 0.5 2 0.4 0 0.3 0.2 -2 0.1 (L) phase -4 0 10 20 30 40 50 60 10 20 30 40 50 60 1 33 64 1 33 64 sample # sample # 0 xmax 0 fN/2 fN x [Matlab] 16 Fourier Optics u P3330 Exp Optics FA’2016 Use FFTSHIFT prior to/aFter FFT or FFT2 Use fftshift for 2D functions – >>smiley2 = fftshift(smiley); 17 Fourier Optics P3330 Exp Optics FA’2016 IF your FFT looks jagged… f = zeros(30,30); f(5:24,13:17) = 1; imshow(f,'InitialMagnification','fit') F = fft2(f); F2 = log(abs(F)); imshow(F2,[-1 5],'InitialMagnification','fit'); colormap(jet); colorbar Discrete Fourier Transform Computed Without Padding 18 Fourier Optics P3330 Exp Optics FA’2016 Apply zero-padding! F = fft2(f,256,256); imshow(log(abs(F)),[-1 5]); colormap(jet); colorbar Discrete Fourier Transform With Padding % Apply FFTSHIFT F = fft2(f,256,256);F2 = fftshift(F); imshow(log(abs(F2)),[-1 5]); colormap(jet); colorbar “wrong” low frequency location! Normal FT look 19 Fourier Optics P3330 Exp Optics FA’2016 Links/reFerences http://ecee.colorado.edu/~mcleod/teaching/ugol/lecturenotes/Lecture%2 04%20Fourier%20Optics.pdf http://www.medphysics.wisc.edu/~block/bme530lectures/matlabintro.ppt http://www.mathworks.com/help/images/fourier-transform.html 20 Fourier Optics P3330 Exp Optics FA’2016.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages20 Page
-
File Size-