L11: Line Coding

L11: Line Coding

EECS 3213 Fall 2014 L11: Line Coding Sebastian Magierowski York University EECS 3213, F14 L11: Line Coding 1 Overview • Line Coding – Techniques to represent bits launched into a baseband channel – A form of baseband “modulation” source channel/ channel channel/line source coder line coder decoder decoder data symbols EECS 3213, F14 L11: Line Coding 2 1 What is Line Coding? • Mapping of binary information sequence into the digital signal that enters the channel – Ex. “1” maps to +A square pulse; “0” to –A pulse • Line code selected to meet system requirements: – Transmitted power: Power consumption = $$$! – Bit timing: Transitions in signal help timing recovery – Bandwidth efficiency: Excessive transitions wastes bandwidth – Low frequency content: Some channels block low frequencies • long periods of +A or of –A causes signal to “droop” • Waveform should not have low-frequency content – Error detection: Ability to detect errors helps – Complexity/cost: Is code implementable in chip at high speed? EECS 3213, F14 L11: Line Coding 3 Line Coding Examples 1 0 1 0 1 1 1 0 0 Unipolar NRZ Polar NRZ NRZ-inverted (differential encoding) Bipolar encoding Manchester encoding Differential Manchester encoding EECS 3213, F14 L11: Line Coding 4 2 Spectrum of Line Codes • NRZ has a high content at 1.2 low frequencies NRZ • Bipolar tightly packed Bipolar around T/2 0.9 • Manchester wasteful of bandwidth 0.6 Manchester power density 0.3 0 0 1 2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 fT 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 EECS 3213, F14 L11: Line Coding 5 Unipolar & Polar Non-Return-to-Zero (NRZ) 1 0 1 0 1 1 1 0 0 Unipolar NRZ Polar NRZ Unipolar NRZ Polar NRZ • “1” maps to +A pulse • “1” maps to +A/2 pulse • “0” maps to no pulse • “0” maps to –A/2 pulse • High Average Power • Better Average Power 0.5*A2 + 0.5*02=A2/2 0.5*(A/2)2 +0.5*(-A/2)2=A2/4 • Long strings of A or 0 • Long strings of +A/2 or –A/2 – Poor timing – Poor timing – Low-frequency content – Low-frequency content • Simple • Simple EECS 3213, F14 L11: Line Coding 6 3 Bipolar Code 1 0 1 0 1 1 1 0 0 Bipolar Encoding • Three signal levels: {-A, 0, +A} • “1” maps to +A or –A in alternation • “0” maps to no pulse – Every +pulse matched by –pulse so little content at low frequencies • String of 1s produces a square wave – Spectrum centered at T/2 • Long string of 0’s causes receiver to lose synch EECS 3213, F14 L11: Line Coding 7 Manchester Code & mBnB Codes 1 0 1 0 1 1 1 0 0 Manchester Encoding • “1” maps into A/2 first T/2, -A/2 • mBnB line code last T/2 • Maps block of m bits into n bits • “0” maps into -A/2 first T/2, A/2 • Manchester code is 1B2B code last T/2 • 4B5B code used in FDDI LAN • Every interval has transition in • 8B10B code used in Gigabit middle Ethernet – Timing recovery easy • 64B66B code used in 10G – Uses double the minimum Ethernet bandwidth • Simple to implement • Used in 10-Mbps Ethernet EECS 3213, F14 L11: Line Coding 8 4 Differential Coding 1 0 1 0 1 1 1 0 0 NRZ-inverted (differential encoding) Differential Manchester encoding • Errors in some systems cause transposition in polarity, +A become – A and vice versa – All subsequent bits in Polar NRZ coding would be in error • Differential line coding provides robustness to this type of error • “1” mapped into transition in signal level • “0” mapped into no transition in signal level • Same spectrum as NRZ • Also used with Manchester coding EECS 3213, F14 L11: Line Coding 9 5 .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    5 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us