The South Limburg candidate site for the Einstein telescope: Geological and seismotectonic setting A. Demoulin Senior Research Associate FSR-FNRS Physical Geography and Quaternary, ULiege « The Einstein telescope project » - Liege – January 31, 2018 The NW European scale: geological setting S Limburg area ECRIS – LRE Anglo-Belgian Basin Rhenish Shield Paris Basin The Alps « The Einstein telescope project » - Liege – January 31, 2018 The NW European scale: tectonic setting Stress map (Heidbach et al., 2016) (after Dèzes et al., 2004) « The Einstein telescope project » - Liege – January 31, 2018 The regional scale: lithology o 0 5 km (geological map of Wallonia, http://geoportail.wallonie.be/walonmap) « The Einstein telescope project » - Liege – January 31, 2018 The regional scale: structural/lithologic cross-section NW SE A Vaalserberg A’ A +300 Gulpen Gueule R. +200 B A’ +200 +100 +100 0 0 0 4 km B’ Liege Unit Herve Unit V e s d r e U n i t Stavelot M. NW SE Plombières Kelmis Walhorn B’ B +400 +300 +200 +200 +100 +100 0 0 -100 -100 -200 -200 (vertical exaggeration: x4) flattens at 3-4 km depth (= Eifel, or Aachen thrust, » décollement) « The Einstein telescope project » - Liege – January 31, 2018 (Meissner, 1999) Plio-Quaternary tectonics – regional uplift and subsidence Geomorphic indicators of tectonic deformation: • incised valleys and river terrace staircases increased incision rate = response to a pulse of accelerated uplift at (Van den Berg, 1996) ~0.7 Ma (a) (b) (a) ~10 Ma 0.003 m/ky ~5 Ma ~2.6 Ma 0.05 m/ky ~1 Ma acceler. 0.3 m/ky 0.05 m/ky (Rixhon & Demoulin, 2018) « The Einstein telescope project » - Liege – January 31, 2018 Plio-Quaternary tectonics – active faulting 1. Fault slip rates Mean long-term (up to 1 My) fault slip rates are inferred from deformed geomorphic features and stratigraphic data: • displaced river terraces • offset in the base of alluvial deposits • tectonic scarps 2. Seismic vs aseismic fault motion Predominant seismic behaviour is indicated by: (Vanneste et al., 2018) • morphotectonic and sedimentary features at fault traces Bree segment of the Geleen fault: • the correspondence between long- - displaced base of the ~740-ky-old Meuse terrace term geologic and shorter-term (104 y) ® geologic slip rate of 0.04-0.07 mm/y paleoseismic slip rates - paleoearthquake record of the last ~100 ky ® paleoseismic slip rate of 0.03-0.06 mm/y « The Einstein telescope project » - Liege – January 31, 2018 Present-day ground deformation – geodetic data A. Feldbiss fault zone – PS-InSAR analysis – the aftermath of coal mining + GW seasonal oscillations (Caro Cuenca et al., 2013) Dż » 7.5 mm/y (Bejarano Urrego et al., 2016) « The Einstein telescope project » - Liege – January 31, 2018 Present-day ground deformation – geodetic data A. Levelling across the N margin of the Hautes Fagnes uplift – random fault creep event A (2) Random fault creep event Eupen Dolhain 5 B Eupen 2s 93-02 between points dre es lake ) 4 22 and 23 = 1.1 mm V m Benchmarks 23-24 m 3 Gileppe ( lake t A A n e 2 m e v 1 o Benchmarks 18-22 M Jalhay 0 -1 3 4 5 6 7 8 9 0 1 2 9 9 9 9 9 9 9 0 0 0 9 9 9 9 9 9 9 0 0 0 1 1 1 1 1 1 1 2 2 2 N E A r d e n n e 5 2s 94-02 between points ) 1 and 57 = 0.9 mm N m m 3 ( 0 3 km Sourbrodt t B Benchmarks 25-1 n B e (GW-corrected) 1 m e Benchmarks 57-56 v (1) Groundwater level variation effect o -1 M |DDH|m = 0,00373 |RF6m| + 0,82677 Correlation: r = 0,97 - confidence level: p = 0,000014 -3 3 4 5 6 7 8 9 0 1 2 1.9 9 9 9 9 9 9 9 0 0 0 95-96 9 9 9 9 9 9 9 0 0 0 1 1 1 1 1 1 1 2 2 2 1.7 93-94 (Demoulin, 2004) 1.5 98-99 96-97 Stockem fault (mm) 1.3 m A Dz(1998-99) 3.5 mm » D z(<1998->1999) 3.6 mm 1.1 m DH| 99-00 01-02 94-95 | 95% confidence 0.9 97-98 00-01 limits. B Dz(1998-99) 3.0 mm » Dmz(<1998->1999) 3.2 mm 0.7 -20 40 100 160 220 280 |RF6 months| « The Einstein telescope project » - Liege – January 31, 2018 Present-day crustal deformation and ground motion – microseismicity Microseismicity 26.01.2016 – 26.01.2018 (Camelbeeck et al., 2007) earthquake quarry blast (0.8 £ ML £ 2.0) (SPWallonie -DGO4 - SDER) – active quarries (data 50.5-51.0°N - 5.5-6.5°E from http://www.seismologie.be/fr/seismologie/sismicite- en-belgique/banque-de-donnees-en-ligne ML = 0.0 ML = 2.0 At 10 km distance Amax » 32 µm Amax » 3.2 mm 30 km Amax » 8 µm Amax » 0.8 mm « The Einstein telescope project » - Liege – January 31, 2018 Ground motion – seismic attenuation - the geological as primary seismic isolator? Source-station couples used for Qc estimates in E Belgium and S Limburg 1.16 Hautes Fagnes: Qc = 17.0 f 1.37 Ardenne: Qc = 21.2 f 1.2 S Limburg – RVG: Qc = 26.9 f (El Bouch et al., 2002) « The Einstein telescope project » - Liege – January 31, 2018 Ground motion – seismic shaking and site effects + soft-sediment to moderately indurated Cretaceous cover + propagation of surface waves along the numerous thrust faults + vulnerability of abandoned mines to seismic shaking http://www.seismologie.be/fr/seismologie/tremblements-de-terre-en-belgique/ny2rwlmq4 (1st Atlas of Belgium, 1950-72) Seismic wave amplification in the damage zone of NNW-SSE faults http://www.seismologie.be/fr/seismologie/tremblements-de-terre- en-belgique/vw15qky10 (Demoulin, 2006) « The Einstein telescope project » - Liege – January 31, 2018 Conclusion: South Limburg versus other nearby potential ET sites S Limburg Mol Hautes Redu (central Famenne (Campine) Fagnes Ardenne) high-tech environment + + 0 + 0 building cost - + - - 0 active fault density - - - 0 + + (micro)seismicity level - - - + + human-induced seismicity (quarries) 0 ++ 0 + 0 other human seismic noise (big cities, - - ++ ++ ++ industry) seismic attenuation - ? + 0 ? thrust faults as propagators of surface noise - + + + + lithologic/structural uniformity allowing - - 0 0 + + simpler noise modelling mine GW-induced ground deformation - - + + + seasonal GW-induced ground deformation 0 0 - 0 0 ground deformation from load variations - + - + + (open pit mines in Germany, lakes) « The Einstein telescope project » - Liege – January 31, 2018 Thank you « The Einstein telescope project » - Liege – January 31, 2018 Plio-Quaternary tectonics – regional uplift and subsidence Geomorphic indicators of tectonic deformation: • tilted surfaces (local uplift) Current gradients of the tertiary planation surfaces (%) 0.6 0.6 7.5 0.5 <0.1 <0.1 0.2 0.3 0.2 0.3 « The Einstein telescope project » - Liege – January 31, 2018 Present-day ground deformation – geodetic data A. Feldbiss fault zone – levelling at Sittard (NL) – seasonal groundwater perturbation + tectonic trend (?) 1992-2009 -0.60±0.11 mm/y (Demoulin, 2006) « The Einstein telescope project » - Liege – January 31, 2018 « The Einstein telescope project » - Liege – January 31, 2018 « The Einstein telescope project » - Liege – January 31, 2018.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages18 Page
-
File Size-