Vector Error Correction Model, VECM Cointegrated VAR Chapter 4

Vector Error Correction Model, VECM Cointegrated VAR Chapter 4

<p>Vector error correction model, VECM <br>Cointegrated VAR </p><p>Chapter 4 </p><p>Financial Econometrics </p><p>Michael Hauser <br>WS18/19 </p><p>1 / 58 </p><p>Content </p><p>IIIIII</p><p>Motivation: plausible economic relations Model with I(1) variables: spurious regression, bivariate cointegration Cointegration Examples: unstable VAR(1), cointegrated VAR(1) VECM, vector error correction model Cointegrated VAR models, model structure, estimation, testing, forecasting (Johansen) </p><p>I</p><p>Bivariate cointegration </p><p>2 / 58 </p><p><strong>Motivation </strong></p><p>3 / 58 </p><p>Paths of Dow JC and DAX: 10/2009 - 10/2010 </p><p>We observe a parallel development. Remarkably this pattern can be observed for single years at least since 1998, though both are assumed to be geometric random walks. They are non stationary, the log-series are I(1). </p><p>If a linear combination of I(1) series is stationary, i.e. I(0), the series are called </p><p><strong>cointegrated</strong>. </p><p>If 2 processes x<sub style="top: 0.1375em;">t </sub>and y<sub style="top: 0.1375em;">t </sub>are both I(1) and </p><p>y<sub style="top: 0.1375em;">t </sub>− αx<sub style="top: 0.1375em;">t </sub>= ꢀ<sub style="top: 0.1375em;">t </sub></p><p>with ꢀ<sub style="top: 0.1375em;">t </sub>trend-stationary or simply I(0), then x<sub style="top: 0.1375em;">t </sub>and y<sub style="top: 0.1375em;">t </sub>are called cointegrated. </p><p>4 / 58 </p><p>Cointegration in economics </p><p>This concept origins in macroeconomics where series often seen as I(1) are regressed onto, like private consumption, C, and disposable income, Y<sup style="top: -0.3299em;">d </sup>. Despite I(1), Y<sup style="top: -0.3298em;">d </sup>and C cannot diverge too much in either direction: </p><p>C &gt; Y<sup style="top: -0.3754em;">d </sup>or C ꢀ Y<sup style="top: -0.3754em;">d </sup></p><p>Or, according to the theory of competitive markets the profit rate of firms (profits/invested capital) (both I(1)) should converge to the market average over time. This means that profits should be proportional to the invested capital in the long run. </p><p>5 / 58 </p><p>Common stochastic trend </p><p>The idea of cointegration is that there is a common stochastic trend, an I(1) process Z, underlying two (or more) processes X and Y. E.g. </p><p>X<sub style="top: 0.1375em;">t </sub>= γ<sub style="top: 0.1601em;">0 </sub>+ γ<sub style="top: 0.1601em;">1</sub>Z<sub style="top: 0.1375em;">t </sub>+ ꢀ<sub style="top: 0.1375em;">t </sub>Y<sub style="top: 0.1375em;">t </sub>= δ<sub style="top: 0.1601em;">0 </sub>+ δ<sub style="top: 0.1601em;">1</sub>Z<sub style="top: 0.1375em;">t </sub>+ η<sub style="top: 0.1375em;">t </sub></p><p>ꢀ<sub style="top: 0.1375em;">t </sub>and η<sub style="top: 0.1375em;">t </sub>are stationary, I(0), with mean 0. They may be serially correlated. Though X<sub style="top: 0.1375em;">t </sub>and Y<sub style="top: 0.1375em;">t </sub>are both I(1), there exists a linear combination of them which is stationary: </p><p>δ<sub style="top: 0.1601em;">1</sub>X<sub style="top: 0.1375em;">t </sub>− γ<sub style="top: 0.1601em;">1</sub>Y<sub style="top: 0.1375em;">t </sub>∼ I(0) </p><p>6 / 58 </p><p><strong>Models with I(1) variables </strong></p><p>7 / 58 </p><p>Spurious regression </p><p>The spurious regression problem arises if arbitrarily </p><p>I</p><p>trending or </p><p>I</p><p>nonstationary series are regressed on each other. </p><p>II</p><p>In case of (e.g. deterministic) trending the spuriously found relationship is due to the trend (growing over time) governing both series instead to economic reasons. t-statistic and R<sup style="top: -0.3298em;">2 </sup>are implausibly large. </p><p>In case of nonstationarity (of I(1) type) the series - even without drifts - tend to show local trends, which tend to comove along for relative long periods. </p><p>8 / 58 </p><p>Spurious regression: independent I(1)’s </p><p>We simulate paths of 2 RWs without drift with independently generated standard normal white noises, ꢀ<sub style="top: 0.1375em;">t </sub>, η<sub style="top: 0.1375em;">t </sub>. </p><p>X<sub style="top: 0.1375em;">t </sub>= X<sub style="top: 0.1601em;">t−1 </sub>+ ꢀ<sub style="top: 0.1375em;">t </sub>, Y<sub style="top: 0.1375em;">t </sub>= Y<sub style="top: 0.1601em;">t−1 </sub>+ η<sub style="top: 0.1375em;">t </sub>, t = 1, 2, 3, . . . , T </p><p>Then we estimate by LS the model </p><p>Y<sub style="top: 0.1375em;">t </sub>= α + βX<sub style="top: 0.1375em;">t </sub>+ ζ<sub style="top: 0.1375em;">t </sub></p><p>In the population α = 0 and β = 0, since X<sub style="top: 0.1375em;">t </sub>and Y<sub style="top: 0.1375em;">t </sub>are independent. Replications for increasing sample sizes shows that </p><p>the DW-statistics are close to 0. R<sup style="top: -0.3298em;">2 </sup>is too large. </p><p>IIII</p><p>ζ<sub style="top: 0.1375em;">t </sub>is I(1), nonstationary. the estimates are inconsistent. </p><p>√</p><p>the t<sub style="top: 0.1482em;">β</sub>-statistic diverges with rate&nbsp;T. </p><p>9 / 58 </p><p>Spurious regression: independence </p><p>As both X and Y are independent I(1)s, the relation can be checked consistently using first differences. </p><p>∆Y<sub style="top: 0.1375em;">t </sub>= β ∆X<sub style="top: 0.1375em;">t </sub>+ ξ<sub style="top: 0.1375em;">t </sub></p><p>Here we find that </p><p>ˆ</p><p>III</p><p>β has the usual distribution around zero, the t<sub style="top: 0.1481em;">β</sub>-values are t-distributed, the error ξ<sub style="top: 0.1375em;">t </sub>is WN. </p><p>10 / 58 </p><p>Bivariate cointegration </p><p>However, if we observe two I(1) processes X and Y, so that the linear combination </p><p>Y<sub style="top: 0.1375em;">t </sub>= α + βX<sub style="top: 0.1375em;">t </sub>+ ζ<sub style="top: 0.1375em;">t </sub></p><p>is stationary, i.e. ζ<sub style="top: 0.1375em;">t </sub>is stationary, then </p><p>I</p><p>X<sub style="top: 0.1375em;">t </sub>and Y<sub style="top: 0.1375em;">t </sub>are cointegrated. <br>When we estimate this model with LS, </p><p>ˆ</p><p>II</p><p>the estimator β is not only consistent, but <strong>superconsistent</strong>. It converges with the rate T, </p><p>√</p><p>instead of&nbsp;T. However, the t<sub style="top: 0.1481em;">β</sub>-statistic is asy normal only if ζ<sub style="top: 0.1375em;">t </sub>is not serially correlated. </p><p>11 / 58 </p><p>Bivariate cointegration: discussion </p><p>II</p><p>The Johansen procedure (which allows for correction for serial correlation easily) (see below) is to be preferred to single equation procedures. </p><p>If the model is extended to 3 or more variables, more than one relation with stationary errors may exist. Then when estimating only a multiple regression, it is not clear what we get. </p><p>12 / 58 </p><p><strong>Cointegration </strong></p><p>13 / 58 </p><p>Definition: Cointegration </p><p>Definition: Given a set of I(1) variables {x<sub style="top: 0.1601em;">1t </sub>, . . . , x<sub style="top: 0.1601em;">kt </sub>}. If there exists a linear combination consisting of all vars with a vector β so that </p><p>β<sub style="top: 0.1601em;">1</sub>x<sub style="top: 0.1601em;">1t </sub>+ . . . + β<sub style="top: 0.1601em;">k </sub>x<sub style="top: 0.1601em;">kt </sub>= β<sup style="top: -0.3753em;">0</sup><strong>x</strong><sub style="top: 0.1375em;">t </sub>. . .&nbsp;trend-stationary </p><p>β<sub style="top: 0.1601em;">j </sub>= 0, j = 1, . . . , k. Then the x’s are cointegrated of order CI(1,1). β<sup style="top: -0.3299em;">0</sup><strong>x</strong><sub style="top: 0.1375em;">t </sub>is a (trend-)stationary variable. </p><p>II</p><p>The definition is symmetric in the vars. There is no interpretation of endogenous or exogenous vars. A simultaneous relationship is described. </p><p>Definition: Trend-stationarity means that after subtracting a deterministic trend the process is I(0). </p><p>14 / 58 </p><p>Definition: Cointegration (cont) </p><p>I</p><p>β is defined only up to a scale. If β<sup style="top: -0.3299em;">0</sup><strong>x</strong><sub style="top: 0.1375em;">t </sub>is trend-stationary, then also c(β<sup style="top: -0.3299em;">0</sup><strong>x</strong><sub style="top: 0.1375em;">t </sub>) with c = 0. Moreover, any linear combination of cointegrating relationships (stationary variables) is stationary. </p><p>More generally we could consider <strong>x </strong>∼ I(d) and β<sup style="top: -0.3299em;">0</sup><strong>x </strong>∼ I(d − b) with b &gt; 0. </p><p>II</p><p>Then the x’s are CI(d, b). We will deal only with the standard case of CI(1,1). </p><p>15 / 58 </p><p><strong>An unstable VAR(1), an example </strong></p><p>16 / 58 </p><p>An unstable VAR(1):&nbsp;<strong>x</strong><sub style="top: 0.1793em;">t </sub>= Φ<sub style="top: 0.1798em;">1</sub><strong>x</strong><sub style="top: 0.1798em;">t−1 </sub>+ ꢀ<sub style="top: 0.1793em;">t </sub></p><p>We analyze in the following the properties of </p><p></p><ul style="display: flex;"><li style="flex:1">"</li><li style="flex:1">#</li><li style="flex:1">"</li></ul><p></p><p>#&nbsp;" </p><p></p><ul style="display: flex;"><li style="flex:1">#</li><li style="flex:1">"</li><li style="flex:1">#</li></ul><p></p><p>x<sub style="top: 0.1601em;">1t </sub>x<sub style="top: 0.1601em;">2t </sub></p><p>0.5 −1. </p><p>x<sub style="top: 0.1601em;">1,t−1 </sub>x<sub style="top: 0.1601em;">2,t−1 </sub></p><p>ꢀ<sub style="top: 0.1601em;">1t </sub>ꢀ<sub style="top: 0.1601em;">2t </sub></p><p></p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">+</li></ul><p></p><p>−.25 0.5 <br>ꢀ<sub style="top: 0.1375em;">t </sub>are weakly stationary and serially uncorrelated. We know a VAR(1) is stable, if the eigenvalues of Φ<sub style="top: 0.1601em;">1 </sub>are less 1 in modulus. </p><p>II</p><p>The eigenvalues of Φ<sub style="top: 0.1601em;">1 </sub>are λ<sub style="top: 0.1601em;">1,2 </sub>= 0, 1. The roots of the characteristic function&nbsp;|<strong>I </strong>− Φ<sub style="top: 0.1601em;">1</sub>z| = 0 should&nbsp;be outside the unit circle for stationarity. Actually, the roots are&nbsp;z = (1/λ) with λ = 0. z = 1. </p><p>Φ<sub style="top: 0.1601em;">1 </sub>has a root on the unit circle. So process <strong>x</strong><sub style="top: 0.1375em;">t </sub>is not stable. </p><p>Remark: Φ<sub style="top: 0.1601em;">1 </sub>is singular; its rank is 1. </p><p>17 / 58 </p><p>Common trend </p><p>For all Φ<sub style="top: 0.1601em;">1 </sub>there exists an invertible (i.g. full) matrix <strong>L </strong>so that </p><p><strong>L</strong>Φ<sub style="top: 0.1601em;">1</sub><strong>L</strong><sup style="top: -0.3753em;">−1 </sup>= Λ </p><p>Λ is (for simplicity) diagonal containing the eigenvalues of Φ<sub style="top: 0.1601em;">1</sub>. </p><p>We define new variables&nbsp;<strong>y</strong><sub style="top: 0.1375em;">t </sub>= <strong>Lx</strong><sub style="top: 0.1375em;">t </sub>and η<sub style="top: 0.1375em;">t </sub>= <strong>L</strong>ꢀ<sub style="top: 0.1375em;">t </sub>. </p><p>Left multiplication of the VAR(1) with <strong>L </strong>gives </p><p><strong>Lx</strong><sub style="top: 0.1375em;">t </sub>= <strong>L</strong>Φ<sub style="top: 0.1601em;">1</sub><strong>x</strong><sub style="top: 0.1601em;">t−1 </sub>+ <strong>L</strong>ꢀ<sub style="top: 0.1375em;">t </sub><br>(<strong>Lx</strong><sub style="top: 0.1375em;">t </sub>) = <strong>L</strong>Φ<sub style="top: 0.1601em;">1</sub><strong>L</strong><sup style="top: -0.3753em;">−1</sup>(<strong>Lx</strong><sub style="top: 0.1601em;">t−1</sub>) + (<strong>L</strong>ꢀ<sub style="top: 0.1375em;">t </sub>) <strong>y</strong><sub style="top: 0.1375em;">t </sub>= Λ<strong>y</strong><sub style="top: 0.1601em;">t−1 </sub>+ η<sub style="top: 0.1375em;">t </sub></p><p>18 / 58 </p><p>Common trend: x’s are I(1) </p><p>In our case <strong>L </strong>and Λ are </p><p></p><ul style="display: flex;"><li style="flex:1">"</li><li style="flex:1">#</li><li style="flex:1">"</li><li style="flex:1">#</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">1.0 −2.0 </li><li style="flex:1">1 0 </li></ul><p>0 0 </p><p><strong>L </strong>= </p><p>,</p><p>Λ = </p><p>0.5 1.0 <br>Then </p><p></p><ul style="display: flex;"><li style="flex:1">"</li><li style="flex:1">#</li><li style="flex:1">"</li></ul><p></p><p>#&nbsp;" </p><p></p><ul style="display: flex;"><li style="flex:1">#</li><li style="flex:1">"</li><li style="flex:1">#</li></ul><p></p><p>y<sub style="top: 0.1601em;">1t </sub>y<sub style="top: 0.1601em;">2t </sub></p><p>1 0 </p><p>=</p><p>y<sub style="top: 0.1601em;">1,t−1 </sub>y<sub style="top: 0.1601em;">2,t−1 </sub></p><p>η<sub style="top: 0.1601em;">1t </sub>η<sub style="top: 0.1601em;">2t </sub></p><p>+</p><p>0 0 </p><p>I</p><p>η<sub style="top: 0.1375em;">t </sub>= <strong>L</strong>ꢀ<sub style="top: 0.1375em;">t </sub>: η<sub style="top: 0.1601em;">1t </sub>and η<sub style="top: 0.1601em;">2t </sub>are linear combinations of stationary processes. So they are stationary. </p><p>II</p><p>So also y<sub style="top: 0.1601em;">2t </sub>is stationary. y<sub style="top: 0.1601em;">1t </sub>is obviously integrated of order 1, I(1). </p><p>19 / 58 </p><p>Common trend y<sub style="top: 0.1798em;">1t</sub>, x’s as function of y<sub style="top: 0.1798em;">1t </sub></p><p><strong>y</strong><sub style="top: 0.1375em;">t </sub>= <strong>Lx</strong><sub style="top: 0.1375em;">t </sub>with <strong>L </strong>invertible, so we can express <strong>x</strong><sub style="top: 0.1375em;">t </sub>in <strong>y</strong><sub style="top: 0.1375em;">t </sub>. </p><p>Left multiplication by <strong>L</strong><sup style="top: -0.3299em;">−1 </sup>gives </p><p></p><ul style="display: flex;"><li style="flex:1"><strong>L</strong></li><li style="flex:1"><sup style="top: -0.3753em;">−1</sup><strong>y</strong><sub style="top: 0.1375em;">t </sub>= <strong>L</strong><sup style="top: -0.3753em;">−1</sup>Λ<strong>y</strong><sub style="top: 0.1601em;">t−1 </sub>+ <strong>L</strong><sup style="top: -0.3753em;">−1</sup>η<sub style="top: 0.1375em;">t </sub></li></ul><p><strong>x</strong><sub style="top: 0.1375em;">t </sub>= (<strong>L</strong><sup style="top: -0.3753em;">−1</sup>Λ)<strong>y</strong><sub style="top: 0.1601em;">t−1 </sub>+ ꢀ<sub style="top: 0.1375em;">t </sub><br><strong>L</strong><sup style="top: -0.3298em;">−1 </sup>= . . . </p><p>x<sub style="top: 0.1601em;">1t </sub>= (1/2)y<sub style="top: 0.1601em;">1,t−1 </sub>+ ꢀ<sub style="top: 0.1601em;">1t </sub>x<sub style="top: 0.1601em;">2t </sub>= −(1/4)y<sub style="top: 0.1601em;">1,t−1 </sub>+ ꢀ<sub style="top: 0.1601em;">2t </sub></p><p>II</p><p>Both x<sub style="top: 0.1601em;">1t </sub>and x<sub style="top: 0.1601em;">2t </sub>are I(1), since y<sub style="top: 0.1601em;">1t </sub>is I(1). y<sub style="top: 0.1601em;">1t </sub>is called the <strong>common trend </strong>of x<sub style="top: 0.1601em;">1t </sub>and x<sub style="top: 0.1601em;">2t </sub>. It is the common nonstationary component in both x<sub style="top: 0.1601em;">1t </sub>and x<sub style="top: 0.1601em;">2t </sub>. </p><p>20 / 58 </p><p>Cointegrating relation </p><p>Now we eliminate y<sub style="top: 0.1601em;">1,t−1 </sub>in the system above by multiplying the 2nd equation by 2 and adding to the first. </p><p>x<sub style="top: 0.1601em;">1t </sub>+ 2x<sub style="top: 0.1601em;">2t </sub>= (ꢀ<sub style="top: 0.1601em;">1,t </sub>+ 2ꢀ<sub style="top: 0.1601em;">2,t </sub>) </p><p>This gives a stationary process, which is called the <strong>cointegrating relation</strong>. This is the only linear combination (apart from a factor) of both nonstationary processes, which is stationary. </p><p>21 / 58 </p><p><strong>A cointegrated VAR(1), an example </strong></p><p>22 / 58 </p><p>A cointegrated VAR(1) </p><p>We go back to the system and proceed directly. </p><p><strong>x</strong><sub style="top: 0.1375em;">t </sub>= Φ<sub style="top: 0.1601em;">1</sub><strong>x</strong><sub style="top: 0.1601em;">t−1 </sub>+ ꢀ<sub style="top: 0.1375em;">t </sub></p><p>and subtract <strong>x</strong><sub style="top: 0.1601em;">t−1 </sub>on both sides (cp. the Dickey-Fuller statistic). </p><p></p><ul style="display: flex;"><li style="flex:1">"</li><li style="flex:1">#</li><li style="flex:1">"</li></ul><p></p><p>#&nbsp;" </p><p></p><ul style="display: flex;"><li style="flex:1">#</li><li style="flex:1">"</li><li style="flex:1">#</li></ul><p></p><p>∆x<sub style="top: 0.1601em;">1t </sub>∆x<sub style="top: 0.1601em;">2t </sub></p><p>−.5 −1. </p><p>x<sub style="top: 0.1601em;">1,t−1 </sub>x<sub style="top: 0.1601em;">2,t−1 </sub></p><p>ꢀ<sub style="top: 0.1601em;">1t </sub>ꢀ<sub style="top: 0.1601em;">2t </sub></p><p></p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">+</li></ul><p></p><p>−.25 −.5 <br>The coefficient matrix Π, Π = −(<strong>I </strong>− Φ<sub style="top: 0.1601em;">1</sub>), in </p><p>∆<strong>x</strong><sub style="top: 0.1375em;">t </sub>= Π<strong>x</strong><sub style="top: 0.1601em;">t−1 </sub>+ ꢀ<sub style="top: 0.1375em;">t </sub></p><p>has only rank 1. It is singular. Then Π can be factorized as </p><p>Π = αβ<sup style="top: -0.3753em;">0 </sup></p><p>(2 × 2) = (2 × 1)(1 × 2) </p><p>23 / 58 </p><p>A cointegrated VAR(1) </p><p>k the number of endogenous variables, here k = 2. m = Rank(Π) = 1, is the number of cointegrating relations. </p><p>A solution for Π = αβ<sup style="top: -0.3299em;">0 </sup>is </p><p></p><ul style="display: flex;"><li style="flex:1">"</li><li style="flex:1">#</li><li style="flex:1">&nbsp;</li></ul><p></p><p>!&nbsp;&nbsp;&nbsp;</p><p>!ꢁ</p><ul style="display: flex;"><li style="flex:1">&nbsp;</li><li style="flex:1">!</li></ul><p></p><p>0</p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>−.5 −1. </p><p></p><ul style="display: flex;"><li style="flex:1">−.5 </li><li style="flex:1">1</li></ul><p>2<br>−.5 </p><p></p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">=</li></ul><p></p><p>1 2 </p><ul style="display: flex;"><li style="flex:1">−.25 −.5 </li><li style="flex:1">−.25 </li><li style="flex:1">−.25 </li></ul><p>Substituted in the model </p><p></p><ul style="display: flex;"><li style="flex:1">"</li><li style="flex:1">#</li><li style="flex:1">&nbsp;</li><li style="flex:1">!</li><li style="flex:1">"</li><li style="flex:1">#</li><li style="flex:1">"</li><li style="flex:1">#</li></ul><p>ꢀ</p><p>∆x<sub style="top: 0.1601em;">1t </sub>∆x<sub style="top: 0.1601em;">2t </sub></p><p>−.5 <br>−.25 </p><p>x<sub style="top: 0.1601em;">1,t−1 </sub>x<sub style="top: 0.1601em;">2,t−1 </sub></p><p>ꢀ<sub style="top: 0.1601em;">1t </sub>ꢀ<sub style="top: 0.1601em;">2t </sub></p><p></p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">+</li></ul><p></p><p>1 2 </p><p>24 / 58 </p><p>A cointegrated VAR(1) </p><p>Multiplying out </p><p></p><ul style="display: flex;"><li style="flex:1">"</li><li style="flex:1">#</li><li style="flex:1">&nbsp;</li><li style="flex:1">!</li><li style="flex:1">"</li><li style="flex:1">#</li></ul><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>∆x<sub style="top: 0.1601em;">1t </sub>∆x<sub style="top: 0.1601em;">2t </sub></p><p>−.5 </p><p>ꢀ<sub style="top: 0.1601em;">1t </sub>ꢀ<sub style="top: 0.1601em;">2t </sub></p><p></p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">+</li></ul><p></p><p>x<sub style="top: 0.1602em;">1,t−1 </sub>+ 2x<sub style="top: 0.1602em;">2,t−1 </sub></p><p>−.25 <br>The component (x<sub style="top: 0.1602em;">1,t−1 </sub>+ 2x<sub style="top: 0.1602em;">2,t−1</sub>) appears in both equations. As the lhs variables and the errors are stationary, this linear combination is stationary. </p><p>This component is our <strong>cointegrating relation </strong>from above. </p><p>25 / 58 </p><p><strong>Vector error correction, VEC </strong></p><p>26 / 58 </p><p>VECM, vector error correction model </p><p>Given a VAR(p) of I(1) x’s (ignoring consts and determ trends) </p><p><strong>x</strong><sub style="top: 0.1375em;">t </sub>= Φ<sub style="top: 0.1601em;">1</sub><strong>x</strong><sub style="top: 0.1601em;">t−1 </sub>+ . . . + Φ<sub style="top: 0.1363em;">p</sub><strong>x</strong><sub style="top: 0.1375em;">t−p </sub>+ ꢀ<sub style="top: 0.1375em;">t </sub></p><p>There always exists an <strong>error correction </strong>representation of the form (trick </p><p><strong>x</strong><sub style="top: 0.1375em;">t </sub>= <strong>x</strong><sub style="top: 0.1601em;">t−1 </sub>+ ∆<strong>x</strong><sub style="top: 0.1375em;">t </sub>) </p><p>p−1 </p><p>X</p><p>∆<strong>x</strong><sub style="top: 0.1376em;">t </sub>= Π<strong>x</strong><sub style="top: 0.1602em;">t−1 </sub></p><p>+</p><p>Φ<sup style="top: -0.3753em;">∗</sup><sub style="top: 0.2433em;">i </sub>∆<strong>x</strong><sub style="top: 0.1602em;">t−i </sub>+ ꢀ<sub style="top: 0.1375em;">t </sub></p><p>i=1 </p><p>where Π and the Φ<sup style="top: -0.3299em;">∗ </sup>are functions of the Φ’s. Specifically, </p><p>p</p><p>X</p><p>Φ<sup style="top: -0.3754em;">∗</sup><sub style="top: 0.2433em;">j </sub>= − </p><p>Φ<sub style="top: 0.1601em;">i</sub>, j = 1, . . . , p − 1 </p><p>i=j+1 </p><p>Π = −(<strong>I </strong>− Φ<sub style="top: 0.1601em;">1 </sub>− . . . − Φ<sub style="top: 0.1363em;">p</sub>) = −Φ(1) </p><p>The characteristic polynomial is&nbsp;<strong>I </strong>− Φ<sub style="top: 0.1601em;">1</sub>z − . . . − Φ<sub style="top: 0.1363em;">p</sub>z<sup style="top: -0.3299em;">p </sup>= Φ(z). </p><p>27 / 58 </p><p>P</p><p>Interpretation of&nbsp;∆<strong>x</strong><sub style="top: 0.1793em;">t </sub>= Π<strong>x</strong><sub style="top: 0.1798em;">t−1 </sub></p><p>+</p><p><sup style="top: -0.5866em;">p−1 </sup>Φ<sup style="top: -0.4338em;">∗</sup><sub style="top: 0.3489em;">i </sub>∆<strong>x</strong><sub style="top: 0.1798em;">t−i </sub>+ ꢀ<sub style="top: 0.1793em;">t </sub></p><p>i=1 </p><p>III</p><p>If Π = <strong>0</strong>, (all λ(Π) = 0) then there is no cointegration. Nonstationarity of I(1) type vanishes by taking differences. </p><p>If Π has full rank, k, then the x’s cannot be I(1) but are stationary. </p><p>(Π<sup style="top: -0.3299em;">−1</sup>∆<strong>x</strong><sub style="top: 0.1375em;">t </sub>= <strong>x</strong><sub style="top: 0.1601em;">t−1 </sub>+ . . . + Π<sup style="top: -0.3299em;">−1</sup>ꢀ<sub style="top: 0.1375em;">t </sub>) </p><p>The interesting case is, Rank(Π) = m, 0 &lt; m &lt; k, as this is the case of cointegration. We write </p><p>Π = αβ<sup style="top: -0.3753em;">0 </sup></p><p>(k × k) = (k × m)[(k × m)<sup style="top: -0.3753em;">0</sup>] </p><p>where the columns of β contain the m cointegrating vectors, and the columns of α the m adjustment vectors. </p><p>Rank(Π) = min[ Rank(α), Rank(β) ] </p><p>28 / 58 </p><p>P</p><p>Long term relationship in&nbsp;∆<strong>x</strong><sub style="top: 0.1793em;">t </sub>= Π<strong>x</strong><sub style="top: 0.1798em;">t−1 </sub></p><p>+</p><p><sup style="top: -0.5866em;">p−1 </sup>Φ<sup style="top: -0.4338em;">∗</sup><sub style="top: 0.3489em;">i </sub>∆<strong>x</strong><sub style="top: 0.1798em;">t−i </sub>+ ꢀ<sub style="top: 0.1793em;">t </sub></p><p>i=1 </p><p>There is an adjustment to the ’equilibrium’ <strong>x</strong><sup style="top: -0.3299em;">∗ </sup>or long term relation described by the cointegrating relation. </p><p>I</p><p>Setting ∆<strong>x </strong>= <strong>0 </strong>we obtain the long run relation, i.e. </p><p>Π<strong>x</strong><sup style="top: -0.3753em;">∗ </sup>= <strong>0 </strong></p><p>This may be wirtten as </p><p>Π<strong>x</strong><sup style="top: -0.3754em;">∗ </sup>= α(β<sup style="top: -0.3754em;">0</sup><strong>x</strong><sup style="top: -0.3754em;">∗</sup>) = <strong>0 </strong></p><p>In the case 0 &lt; Rank(Π) = Rank(α) = m &lt; k the number of equations of this system of linear equations which are different from zero is m. </p><p>β<sup style="top: -0.3753em;">0</sup><strong>x</strong><sup style="top: -0.3753em;">∗ </sup>= <strong>0</strong><sub style="top: 0.1601em;">m×1 </sub></p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    58 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us