
<p>Vector error correction model, VECM <br>Cointegrated VAR </p><p>Chapter 4 </p><p>Financial Econometrics </p><p>Michael Hauser <br>WS18/19 </p><p>1 / 58 </p><p>Content </p><p>IIIIII</p><p>Motivation: plausible economic relations Model with I(1) variables: spurious regression, bivariate cointegration Cointegration Examples: unstable VAR(1), cointegrated VAR(1) VECM, vector error correction model Cointegrated VAR models, model structure, estimation, testing, forecasting (Johansen) </p><p>I</p><p>Bivariate cointegration </p><p>2 / 58 </p><p><strong>Motivation </strong></p><p>3 / 58 </p><p>Paths of Dow JC and DAX: 10/2009 - 10/2010 </p><p>We observe a parallel development. Remarkably this pattern can be observed for single years at least since 1998, though both are assumed to be geometric random walks. They are non stationary, the log-series are I(1). </p><p>If a linear combination of I(1) series is stationary, i.e. I(0), the series are called </p><p><strong>cointegrated</strong>. </p><p>If 2 processes x<sub style="top: 0.1375em;">t </sub>and y<sub style="top: 0.1375em;">t </sub>are both I(1) and </p><p>y<sub style="top: 0.1375em;">t </sub>− αx<sub style="top: 0.1375em;">t </sub>= ꢀ<sub style="top: 0.1375em;">t </sub></p><p>with ꢀ<sub style="top: 0.1375em;">t </sub>trend-stationary or simply I(0), then x<sub style="top: 0.1375em;">t </sub>and y<sub style="top: 0.1375em;">t </sub>are called cointegrated. </p><p>4 / 58 </p><p>Cointegration in economics </p><p>This concept origins in macroeconomics where series often seen as I(1) are regressed onto, like private consumption, C, and disposable income, Y<sup style="top: -0.3299em;">d </sup>. Despite I(1), Y<sup style="top: -0.3298em;">d </sup>and C cannot diverge too much in either direction: </p><p>C > Y<sup style="top: -0.3754em;">d </sup>or C ꢀ Y<sup style="top: -0.3754em;">d </sup></p><p>Or, according to the theory of competitive markets the profit rate of firms (profits/invested capital) (both I(1)) should converge to the market average over time. This means that profits should be proportional to the invested capital in the long run. </p><p>5 / 58 </p><p>Common stochastic trend </p><p>The idea of cointegration is that there is a common stochastic trend, an I(1) process Z, underlying two (or more) processes X and Y. E.g. </p><p>X<sub style="top: 0.1375em;">t </sub>= γ<sub style="top: 0.1601em;">0 </sub>+ γ<sub style="top: 0.1601em;">1</sub>Z<sub style="top: 0.1375em;">t </sub>+ ꢀ<sub style="top: 0.1375em;">t </sub>Y<sub style="top: 0.1375em;">t </sub>= δ<sub style="top: 0.1601em;">0 </sub>+ δ<sub style="top: 0.1601em;">1</sub>Z<sub style="top: 0.1375em;">t </sub>+ η<sub style="top: 0.1375em;">t </sub></p><p>ꢀ<sub style="top: 0.1375em;">t </sub>and η<sub style="top: 0.1375em;">t </sub>are stationary, I(0), with mean 0. They may be serially correlated. Though X<sub style="top: 0.1375em;">t </sub>and Y<sub style="top: 0.1375em;">t </sub>are both I(1), there exists a linear combination of them which is stationary: </p><p>δ<sub style="top: 0.1601em;">1</sub>X<sub style="top: 0.1375em;">t </sub>− γ<sub style="top: 0.1601em;">1</sub>Y<sub style="top: 0.1375em;">t </sub>∼ I(0) </p><p>6 / 58 </p><p><strong>Models with I(1) variables </strong></p><p>7 / 58 </p><p>Spurious regression </p><p>The spurious regression problem arises if arbitrarily </p><p>I</p><p>trending or </p><p>I</p><p>nonstationary series are regressed on each other. </p><p>II</p><p>In case of (e.g. deterministic) trending the spuriously found relationship is due to the trend (growing over time) governing both series instead to economic reasons. t-statistic and R<sup style="top: -0.3298em;">2 </sup>are implausibly large. </p><p>In case of nonstationarity (of I(1) type) the series - even without drifts - tend to show local trends, which tend to comove along for relative long periods. </p><p>8 / 58 </p><p>Spurious regression: independent I(1)’s </p><p>We simulate paths of 2 RWs without drift with independently generated standard normal white noises, ꢀ<sub style="top: 0.1375em;">t </sub>, η<sub style="top: 0.1375em;">t </sub>. </p><p>X<sub style="top: 0.1375em;">t </sub>= X<sub style="top: 0.1601em;">t−1 </sub>+ ꢀ<sub style="top: 0.1375em;">t </sub>, Y<sub style="top: 0.1375em;">t </sub>= Y<sub style="top: 0.1601em;">t−1 </sub>+ η<sub style="top: 0.1375em;">t </sub>, t = 1, 2, 3, . . . , T </p><p>Then we estimate by LS the model </p><p>Y<sub style="top: 0.1375em;">t </sub>= α + βX<sub style="top: 0.1375em;">t </sub>+ ζ<sub style="top: 0.1375em;">t </sub></p><p>In the population α = 0 and β = 0, since X<sub style="top: 0.1375em;">t </sub>and Y<sub style="top: 0.1375em;">t </sub>are independent. Replications for increasing sample sizes shows that </p><p>the DW-statistics are close to 0. R<sup style="top: -0.3298em;">2 </sup>is too large. </p><p>IIII</p><p>ζ<sub style="top: 0.1375em;">t </sub>is I(1), nonstationary. the estimates are inconsistent. </p><p>√</p><p>the t<sub style="top: 0.1482em;">β</sub>-statistic diverges with rate T. </p><p>9 / 58 </p><p>Spurious regression: independence </p><p>As both X and Y are independent I(1)s, the relation can be checked consistently using first differences. </p><p>∆Y<sub style="top: 0.1375em;">t </sub>= β ∆X<sub style="top: 0.1375em;">t </sub>+ ξ<sub style="top: 0.1375em;">t </sub></p><p>Here we find that </p><p>ˆ</p><p>III</p><p>β has the usual distribution around zero, the t<sub style="top: 0.1481em;">β</sub>-values are t-distributed, the error ξ<sub style="top: 0.1375em;">t </sub>is WN. </p><p>10 / 58 </p><p>Bivariate cointegration </p><p>However, if we observe two I(1) processes X and Y, so that the linear combination </p><p>Y<sub style="top: 0.1375em;">t </sub>= α + βX<sub style="top: 0.1375em;">t </sub>+ ζ<sub style="top: 0.1375em;">t </sub></p><p>is stationary, i.e. ζ<sub style="top: 0.1375em;">t </sub>is stationary, then </p><p>I</p><p>X<sub style="top: 0.1375em;">t </sub>and Y<sub style="top: 0.1375em;">t </sub>are cointegrated. <br>When we estimate this model with LS, </p><p>ˆ</p><p>II</p><p>the estimator β is not only consistent, but <strong>superconsistent</strong>. It converges with the rate T, </p><p>√</p><p>instead of T. However, the t<sub style="top: 0.1481em;">β</sub>-statistic is asy normal only if ζ<sub style="top: 0.1375em;">t </sub>is not serially correlated. </p><p>11 / 58 </p><p>Bivariate cointegration: discussion </p><p>II</p><p>The Johansen procedure (which allows for correction for serial correlation easily) (see below) is to be preferred to single equation procedures. </p><p>If the model is extended to 3 or more variables, more than one relation with stationary errors may exist. Then when estimating only a multiple regression, it is not clear what we get. </p><p>12 / 58 </p><p><strong>Cointegration </strong></p><p>13 / 58 </p><p>Definition: Cointegration </p><p>Definition: Given a set of I(1) variables {x<sub style="top: 0.1601em;">1t </sub>, . . . , x<sub style="top: 0.1601em;">kt </sub>}. If there exists a linear combination consisting of all vars with a vector β so that </p><p>β<sub style="top: 0.1601em;">1</sub>x<sub style="top: 0.1601em;">1t </sub>+ . . . + β<sub style="top: 0.1601em;">k </sub>x<sub style="top: 0.1601em;">kt </sub>= β<sup style="top: -0.3753em;">0</sup><strong>x</strong><sub style="top: 0.1375em;">t </sub>. . . trend-stationary </p><p>β<sub style="top: 0.1601em;">j </sub>= 0, j = 1, . . . , k. Then the x’s are cointegrated of order CI(1,1). β<sup style="top: -0.3299em;">0</sup><strong>x</strong><sub style="top: 0.1375em;">t </sub>is a (trend-)stationary variable. </p><p>II</p><p>The definition is symmetric in the vars. There is no interpretation of endogenous or exogenous vars. A simultaneous relationship is described. </p><p>Definition: Trend-stationarity means that after subtracting a deterministic trend the process is I(0). </p><p>14 / 58 </p><p>Definition: Cointegration (cont) </p><p>I</p><p>β is defined only up to a scale. If β<sup style="top: -0.3299em;">0</sup><strong>x</strong><sub style="top: 0.1375em;">t </sub>is trend-stationary, then also c(β<sup style="top: -0.3299em;">0</sup><strong>x</strong><sub style="top: 0.1375em;">t </sub>) with c = 0. Moreover, any linear combination of cointegrating relationships (stationary variables) is stationary. </p><p>More generally we could consider <strong>x </strong>∼ I(d) and β<sup style="top: -0.3299em;">0</sup><strong>x </strong>∼ I(d − b) with b > 0. </p><p>II</p><p>Then the x’s are CI(d, b). We will deal only with the standard case of CI(1,1). </p><p>15 / 58 </p><p><strong>An unstable VAR(1), an example </strong></p><p>16 / 58 </p><p>An unstable VAR(1): <strong>x</strong><sub style="top: 0.1793em;">t </sub>= Φ<sub style="top: 0.1798em;">1</sub><strong>x</strong><sub style="top: 0.1798em;">t−1 </sub>+ ꢀ<sub style="top: 0.1793em;">t </sub></p><p>We analyze in the following the properties of </p><p></p><ul style="display: flex;"><li style="flex:1">"</li><li style="flex:1">#</li><li style="flex:1">"</li></ul><p></p><p># " </p><p></p><ul style="display: flex;"><li style="flex:1">#</li><li style="flex:1">"</li><li style="flex:1">#</li></ul><p></p><p>x<sub style="top: 0.1601em;">1t </sub>x<sub style="top: 0.1601em;">2t </sub></p><p>0.5 −1. </p><p>x<sub style="top: 0.1601em;">1,t−1 </sub>x<sub style="top: 0.1601em;">2,t−1 </sub></p><p>ꢀ<sub style="top: 0.1601em;">1t </sub>ꢀ<sub style="top: 0.1601em;">2t </sub></p><p></p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">+</li></ul><p></p><p>−.25 0.5 <br>ꢀ<sub style="top: 0.1375em;">t </sub>are weakly stationary and serially uncorrelated. We know a VAR(1) is stable, if the eigenvalues of Φ<sub style="top: 0.1601em;">1 </sub>are less 1 in modulus. </p><p>II</p><p>The eigenvalues of Φ<sub style="top: 0.1601em;">1 </sub>are λ<sub style="top: 0.1601em;">1,2 </sub>= 0, 1. The roots of the characteristic function |<strong>I </strong>− Φ<sub style="top: 0.1601em;">1</sub>z| = 0 should be outside the unit circle for stationarity. Actually, the roots are z = (1/λ) with λ = 0. z = 1. </p><p>Φ<sub style="top: 0.1601em;">1 </sub>has a root on the unit circle. So process <strong>x</strong><sub style="top: 0.1375em;">t </sub>is not stable. </p><p>Remark: Φ<sub style="top: 0.1601em;">1 </sub>is singular; its rank is 1. </p><p>17 / 58 </p><p>Common trend </p><p>For all Φ<sub style="top: 0.1601em;">1 </sub>there exists an invertible (i.g. full) matrix <strong>L </strong>so that </p><p><strong>L</strong>Φ<sub style="top: 0.1601em;">1</sub><strong>L</strong><sup style="top: -0.3753em;">−1 </sup>= Λ </p><p>Λ is (for simplicity) diagonal containing the eigenvalues of Φ<sub style="top: 0.1601em;">1</sub>. </p><p>We define new variables <strong>y</strong><sub style="top: 0.1375em;">t </sub>= <strong>Lx</strong><sub style="top: 0.1375em;">t </sub>and η<sub style="top: 0.1375em;">t </sub>= <strong>L</strong>ꢀ<sub style="top: 0.1375em;">t </sub>. </p><p>Left multiplication of the VAR(1) with <strong>L </strong>gives </p><p><strong>Lx</strong><sub style="top: 0.1375em;">t </sub>= <strong>L</strong>Φ<sub style="top: 0.1601em;">1</sub><strong>x</strong><sub style="top: 0.1601em;">t−1 </sub>+ <strong>L</strong>ꢀ<sub style="top: 0.1375em;">t </sub><br>(<strong>Lx</strong><sub style="top: 0.1375em;">t </sub>) = <strong>L</strong>Φ<sub style="top: 0.1601em;">1</sub><strong>L</strong><sup style="top: -0.3753em;">−1</sup>(<strong>Lx</strong><sub style="top: 0.1601em;">t−1</sub>) + (<strong>L</strong>ꢀ<sub style="top: 0.1375em;">t </sub>) <strong>y</strong><sub style="top: 0.1375em;">t </sub>= Λ<strong>y</strong><sub style="top: 0.1601em;">t−1 </sub>+ η<sub style="top: 0.1375em;">t </sub></p><p>18 / 58 </p><p>Common trend: x’s are I(1) </p><p>In our case <strong>L </strong>and Λ are </p><p></p><ul style="display: flex;"><li style="flex:1">"</li><li style="flex:1">#</li><li style="flex:1">"</li><li style="flex:1">#</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">1.0 −2.0 </li><li style="flex:1">1 0 </li></ul><p>0 0 </p><p><strong>L </strong>= </p><p>,</p><p>Λ = </p><p>0.5 1.0 <br>Then </p><p></p><ul style="display: flex;"><li style="flex:1">"</li><li style="flex:1">#</li><li style="flex:1">"</li></ul><p></p><p># " </p><p></p><ul style="display: flex;"><li style="flex:1">#</li><li style="flex:1">"</li><li style="flex:1">#</li></ul><p></p><p>y<sub style="top: 0.1601em;">1t </sub>y<sub style="top: 0.1601em;">2t </sub></p><p>1 0 </p><p>=</p><p>y<sub style="top: 0.1601em;">1,t−1 </sub>y<sub style="top: 0.1601em;">2,t−1 </sub></p><p>η<sub style="top: 0.1601em;">1t </sub>η<sub style="top: 0.1601em;">2t </sub></p><p>+</p><p>0 0 </p><p>I</p><p>η<sub style="top: 0.1375em;">t </sub>= <strong>L</strong>ꢀ<sub style="top: 0.1375em;">t </sub>: η<sub style="top: 0.1601em;">1t </sub>and η<sub style="top: 0.1601em;">2t </sub>are linear combinations of stationary processes. So they are stationary. </p><p>II</p><p>So also y<sub style="top: 0.1601em;">2t </sub>is stationary. y<sub style="top: 0.1601em;">1t </sub>is obviously integrated of order 1, I(1). </p><p>19 / 58 </p><p>Common trend y<sub style="top: 0.1798em;">1t</sub>, x’s as function of y<sub style="top: 0.1798em;">1t </sub></p><p><strong>y</strong><sub style="top: 0.1375em;">t </sub>= <strong>Lx</strong><sub style="top: 0.1375em;">t </sub>with <strong>L </strong>invertible, so we can express <strong>x</strong><sub style="top: 0.1375em;">t </sub>in <strong>y</strong><sub style="top: 0.1375em;">t </sub>. </p><p>Left multiplication by <strong>L</strong><sup style="top: -0.3299em;">−1 </sup>gives </p><p></p><ul style="display: flex;"><li style="flex:1"><strong>L</strong></li><li style="flex:1"><sup style="top: -0.3753em;">−1</sup><strong>y</strong><sub style="top: 0.1375em;">t </sub>= <strong>L</strong><sup style="top: -0.3753em;">−1</sup>Λ<strong>y</strong><sub style="top: 0.1601em;">t−1 </sub>+ <strong>L</strong><sup style="top: -0.3753em;">−1</sup>η<sub style="top: 0.1375em;">t </sub></li></ul><p><strong>x</strong><sub style="top: 0.1375em;">t </sub>= (<strong>L</strong><sup style="top: -0.3753em;">−1</sup>Λ)<strong>y</strong><sub style="top: 0.1601em;">t−1 </sub>+ ꢀ<sub style="top: 0.1375em;">t </sub><br><strong>L</strong><sup style="top: -0.3298em;">−1 </sup>= . . . </p><p>x<sub style="top: 0.1601em;">1t </sub>= (1/2)y<sub style="top: 0.1601em;">1,t−1 </sub>+ ꢀ<sub style="top: 0.1601em;">1t </sub>x<sub style="top: 0.1601em;">2t </sub>= −(1/4)y<sub style="top: 0.1601em;">1,t−1 </sub>+ ꢀ<sub style="top: 0.1601em;">2t </sub></p><p>II</p><p>Both x<sub style="top: 0.1601em;">1t </sub>and x<sub style="top: 0.1601em;">2t </sub>are I(1), since y<sub style="top: 0.1601em;">1t </sub>is I(1). y<sub style="top: 0.1601em;">1t </sub>is called the <strong>common trend </strong>of x<sub style="top: 0.1601em;">1t </sub>and x<sub style="top: 0.1601em;">2t </sub>. It is the common nonstationary component in both x<sub style="top: 0.1601em;">1t </sub>and x<sub style="top: 0.1601em;">2t </sub>. </p><p>20 / 58 </p><p>Cointegrating relation </p><p>Now we eliminate y<sub style="top: 0.1601em;">1,t−1 </sub>in the system above by multiplying the 2nd equation by 2 and adding to the first. </p><p>x<sub style="top: 0.1601em;">1t </sub>+ 2x<sub style="top: 0.1601em;">2t </sub>= (ꢀ<sub style="top: 0.1601em;">1,t </sub>+ 2ꢀ<sub style="top: 0.1601em;">2,t </sub>) </p><p>This gives a stationary process, which is called the <strong>cointegrating relation</strong>. This is the only linear combination (apart from a factor) of both nonstationary processes, which is stationary. </p><p>21 / 58 </p><p><strong>A cointegrated VAR(1), an example </strong></p><p>22 / 58 </p><p>A cointegrated VAR(1) </p><p>We go back to the system and proceed directly. </p><p><strong>x</strong><sub style="top: 0.1375em;">t </sub>= Φ<sub style="top: 0.1601em;">1</sub><strong>x</strong><sub style="top: 0.1601em;">t−1 </sub>+ ꢀ<sub style="top: 0.1375em;">t </sub></p><p>and subtract <strong>x</strong><sub style="top: 0.1601em;">t−1 </sub>on both sides (cp. the Dickey-Fuller statistic). </p><p></p><ul style="display: flex;"><li style="flex:1">"</li><li style="flex:1">#</li><li style="flex:1">"</li></ul><p></p><p># " </p><p></p><ul style="display: flex;"><li style="flex:1">#</li><li style="flex:1">"</li><li style="flex:1">#</li></ul><p></p><p>∆x<sub style="top: 0.1601em;">1t </sub>∆x<sub style="top: 0.1601em;">2t </sub></p><p>−.5 −1. </p><p>x<sub style="top: 0.1601em;">1,t−1 </sub>x<sub style="top: 0.1601em;">2,t−1 </sub></p><p>ꢀ<sub style="top: 0.1601em;">1t </sub>ꢀ<sub style="top: 0.1601em;">2t </sub></p><p></p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">+</li></ul><p></p><p>−.25 −.5 <br>The coefficient matrix Π, Π = −(<strong>I </strong>− Φ<sub style="top: 0.1601em;">1</sub>), in </p><p>∆<strong>x</strong><sub style="top: 0.1375em;">t </sub>= Π<strong>x</strong><sub style="top: 0.1601em;">t−1 </sub>+ ꢀ<sub style="top: 0.1375em;">t </sub></p><p>has only rank 1. It is singular. Then Π can be factorized as </p><p>Π = αβ<sup style="top: -0.3753em;">0 </sup></p><p>(2 × 2) = (2 × 1)(1 × 2) </p><p>23 / 58 </p><p>A cointegrated VAR(1) </p><p>k the number of endogenous variables, here k = 2. m = Rank(Π) = 1, is the number of cointegrating relations. </p><p>A solution for Π = αβ<sup style="top: -0.3299em;">0 </sup>is </p><p></p><ul style="display: flex;"><li style="flex:1">"</li><li style="flex:1">#</li><li style="flex:1"> </li></ul><p></p><p>! </p><p>!ꢁ</p><ul style="display: flex;"><li style="flex:1"> </li><li style="flex:1">!</li></ul><p></p><p>0</p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>−.5 −1. </p><p></p><ul style="display: flex;"><li style="flex:1">−.5 </li><li style="flex:1">1</li></ul><p>2<br>−.5 </p><p></p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">=</li></ul><p></p><p>1 2 </p><ul style="display: flex;"><li style="flex:1">−.25 −.5 </li><li style="flex:1">−.25 </li><li style="flex:1">−.25 </li></ul><p>Substituted in the model </p><p></p><ul style="display: flex;"><li style="flex:1">"</li><li style="flex:1">#</li><li style="flex:1"> </li><li style="flex:1">!</li><li style="flex:1">"</li><li style="flex:1">#</li><li style="flex:1">"</li><li style="flex:1">#</li></ul><p>ꢀ</p><p>∆x<sub style="top: 0.1601em;">1t </sub>∆x<sub style="top: 0.1601em;">2t </sub></p><p>−.5 <br>−.25 </p><p>x<sub style="top: 0.1601em;">1,t−1 </sub>x<sub style="top: 0.1601em;">2,t−1 </sub></p><p>ꢀ<sub style="top: 0.1601em;">1t </sub>ꢀ<sub style="top: 0.1601em;">2t </sub></p><p></p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">+</li></ul><p></p><p>1 2 </p><p>24 / 58 </p><p>A cointegrated VAR(1) </p><p>Multiplying out </p><p></p><ul style="display: flex;"><li style="flex:1">"</li><li style="flex:1">#</li><li style="flex:1"> </li><li style="flex:1">!</li><li style="flex:1">"</li><li style="flex:1">#</li></ul><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>∆x<sub style="top: 0.1601em;">1t </sub>∆x<sub style="top: 0.1601em;">2t </sub></p><p>−.5 </p><p>ꢀ<sub style="top: 0.1601em;">1t </sub>ꢀ<sub style="top: 0.1601em;">2t </sub></p><p></p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">+</li></ul><p></p><p>x<sub style="top: 0.1602em;">1,t−1 </sub>+ 2x<sub style="top: 0.1602em;">2,t−1 </sub></p><p>−.25 <br>The component (x<sub style="top: 0.1602em;">1,t−1 </sub>+ 2x<sub style="top: 0.1602em;">2,t−1</sub>) appears in both equations. As the lhs variables and the errors are stationary, this linear combination is stationary. </p><p>This component is our <strong>cointegrating relation </strong>from above. </p><p>25 / 58 </p><p><strong>Vector error correction, VEC </strong></p><p>26 / 58 </p><p>VECM, vector error correction model </p><p>Given a VAR(p) of I(1) x’s (ignoring consts and determ trends) </p><p><strong>x</strong><sub style="top: 0.1375em;">t </sub>= Φ<sub style="top: 0.1601em;">1</sub><strong>x</strong><sub style="top: 0.1601em;">t−1 </sub>+ . . . + Φ<sub style="top: 0.1363em;">p</sub><strong>x</strong><sub style="top: 0.1375em;">t−p </sub>+ ꢀ<sub style="top: 0.1375em;">t </sub></p><p>There always exists an <strong>error correction </strong>representation of the form (trick </p><p><strong>x</strong><sub style="top: 0.1375em;">t </sub>= <strong>x</strong><sub style="top: 0.1601em;">t−1 </sub>+ ∆<strong>x</strong><sub style="top: 0.1375em;">t </sub>) </p><p>p−1 </p><p>X</p><p>∆<strong>x</strong><sub style="top: 0.1376em;">t </sub>= Π<strong>x</strong><sub style="top: 0.1602em;">t−1 </sub></p><p>+</p><p>Φ<sup style="top: -0.3753em;">∗</sup><sub style="top: 0.2433em;">i </sub>∆<strong>x</strong><sub style="top: 0.1602em;">t−i </sub>+ ꢀ<sub style="top: 0.1375em;">t </sub></p><p>i=1 </p><p>where Π and the Φ<sup style="top: -0.3299em;">∗ </sup>are functions of the Φ’s. Specifically, </p><p>p</p><p>X</p><p>Φ<sup style="top: -0.3754em;">∗</sup><sub style="top: 0.2433em;">j </sub>= − </p><p>Φ<sub style="top: 0.1601em;">i</sub>, j = 1, . . . , p − 1 </p><p>i=j+1 </p><p>Π = −(<strong>I </strong>− Φ<sub style="top: 0.1601em;">1 </sub>− . . . − Φ<sub style="top: 0.1363em;">p</sub>) = −Φ(1) </p><p>The characteristic polynomial is <strong>I </strong>− Φ<sub style="top: 0.1601em;">1</sub>z − . . . − Φ<sub style="top: 0.1363em;">p</sub>z<sup style="top: -0.3299em;">p </sup>= Φ(z). </p><p>27 / 58 </p><p>P</p><p>Interpretation of ∆<strong>x</strong><sub style="top: 0.1793em;">t </sub>= Π<strong>x</strong><sub style="top: 0.1798em;">t−1 </sub></p><p>+</p><p><sup style="top: -0.5866em;">p−1 </sup>Φ<sup style="top: -0.4338em;">∗</sup><sub style="top: 0.3489em;">i </sub>∆<strong>x</strong><sub style="top: 0.1798em;">t−i </sub>+ ꢀ<sub style="top: 0.1793em;">t </sub></p><p>i=1 </p><p>III</p><p>If Π = <strong>0</strong>, (all λ(Π) = 0) then there is no cointegration. Nonstationarity of I(1) type vanishes by taking differences. </p><p>If Π has full rank, k, then the x’s cannot be I(1) but are stationary. </p><p>(Π<sup style="top: -0.3299em;">−1</sup>∆<strong>x</strong><sub style="top: 0.1375em;">t </sub>= <strong>x</strong><sub style="top: 0.1601em;">t−1 </sub>+ . . . + Π<sup style="top: -0.3299em;">−1</sup>ꢀ<sub style="top: 0.1375em;">t </sub>) </p><p>The interesting case is, Rank(Π) = m, 0 < m < k, as this is the case of cointegration. We write </p><p>Π = αβ<sup style="top: -0.3753em;">0 </sup></p><p>(k × k) = (k × m)[(k × m)<sup style="top: -0.3753em;">0</sup>] </p><p>where the columns of β contain the m cointegrating vectors, and the columns of α the m adjustment vectors. </p><p>Rank(Π) = min[ Rank(α), Rank(β) ] </p><p>28 / 58 </p><p>P</p><p>Long term relationship in ∆<strong>x</strong><sub style="top: 0.1793em;">t </sub>= Π<strong>x</strong><sub style="top: 0.1798em;">t−1 </sub></p><p>+</p><p><sup style="top: -0.5866em;">p−1 </sup>Φ<sup style="top: -0.4338em;">∗</sup><sub style="top: 0.3489em;">i </sub>∆<strong>x</strong><sub style="top: 0.1798em;">t−i </sub>+ ꢀ<sub style="top: 0.1793em;">t </sub></p><p>i=1 </p><p>There is an adjustment to the ’equilibrium’ <strong>x</strong><sup style="top: -0.3299em;">∗ </sup>or long term relation described by the cointegrating relation. </p><p>I</p><p>Setting ∆<strong>x </strong>= <strong>0 </strong>we obtain the long run relation, i.e. </p><p>Π<strong>x</strong><sup style="top: -0.3753em;">∗ </sup>= <strong>0 </strong></p><p>This may be wirtten as </p><p>Π<strong>x</strong><sup style="top: -0.3754em;">∗ </sup>= α(β<sup style="top: -0.3754em;">0</sup><strong>x</strong><sup style="top: -0.3754em;">∗</sup>) = <strong>0 </strong></p><p>In the case 0 < Rank(Π) = Rank(α) = m < k the number of equations of this system of linear equations which are different from zero is m. </p><p>β<sup style="top: -0.3753em;">0</sup><strong>x</strong><sup style="top: -0.3753em;">∗ </sup>= <strong>0</strong><sub style="top: 0.1601em;">m×1 </sub></p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages58 Page
-
File Size-