THE DEVELOPMENT OF FINITE ELEMENT MODEL FOR MALAYSIAN FEMALE ANTHROPOMETRIC DUMMY Lina Tam A thesis submitted in fulfillment of the requirement for the award of the Master’s Degree of Mechanical Engineering FACULTY OF MECHANICAL AND MANUFACTURING ENGINEERING UNIVERSITI TUN HUSSEIN ONN MALAYSIA MAY 2015 Abstract In recent years, dummy development for crash test have grown rapidly to decrease the fatalities during crash. These dummies are generated based on anthropomet- ric database consisting of several percentile. Anthropometric data is very impor- tant in terms of ergonomics to specify the physical dimensions for product design and dynamic behavior for user safety. The development of dummy models starts from rigid body models to deformable models which is then adopted into finite element models for more accurate and detailed results in doing analysis. Using the numerical method (FEM) to evaluate crash test has increase the cost saving and accuracy in crash analysis. An average anthropometric of 100 Malaysian females with 59 anthropometric data is modeled using Solidworks 2010. The pa- rameters of boundary conditions for the model are conducted in the preprocessor called GiD, before the input file from GiD is run using an explicit finite element program suite called Impact. The dummy model is set in sitting position and crushed with a chair at velocity 15.3ms−1 from behind. The deformation which includes as displacements, velocity and acceleration are presented in this research. The results show that the head experienced the bounce and highest displacement. This model can be further complemented for the family of Malaysian Anthropo- metric Test Dummy in computational test dummies to improve safety for local passengers. v Abstrak Pada tahun-tahun kebelakangan ini, perkembangan model untuk ujian pelang- garan telah berkembang dengan pesat untuk mengurangkan kematian semasa ke- malangan. Model-model ini dihasilkan berdasarkan pangkalan data antropometri yang terdiri daripada beberapa persentil. Data anthropometri adalah sangat penting dari segi ergonomik untuk menentukan dimensi fizikal rekabentuk pro- duk dan tingkah laku dinamik untuk keselamatan pengguna. Pembangunan model bermula dari model badan tegar kepada model boleh ubah dan kemu- diannya diadaptasi ke dalam model unsur terhingga untuk mendapatkan kepu- tusan yang lebih tepat dan terperinci dalam melakukan analisis. Dengan meng- gunakan kaedah unsur berangka (FEM) untuk menilai ujian pelanggaran telah meningkatkan penjimatan kos dan ketepatan dalam analisis pelanggaran. Pu- rata antropometri 100 wanita Malaysia dengan 59 antropometri data dimodelkan menggunakan Solidworks 2010. Parameter keadaan sempadan untuk model di- lakukan di dalam prapemproses yang dipanggil GiD, dan kemudiannya fail input dari GiD dijalankan menggunakan program suit eksplisit unsur terhigga yang dipanggil Impact. Model diletakkan dalam keadaan duduk dan dihempap den- gan kerusi dengan kelajuan halaju 15.3ms−1 dari belakang. Perubahan seperti anjakan, halaju dan pecutan dibentangkan dalam penyelidikan ini. Keputusan menunjukkan bahawa kepala mengalami lantunan dan anjakan yang paling tinggi. Model ini boleh dilengkapkan lagi untuk model keluarga ATD Malaysia dalam ujian berkomputer untuk meningkatkan keselamatan penumpang tempatan. vi Contents Declaration ii Dedication iii Acknowledgment iv Abstract v Abstrak vi List of Figures xi List of Tables xv List of Appendices xvii List of Nomenclatures xviii Chapter 1 Introduction 1 1.1 Problem Statement4 1.2 Objective5 1.3 Scope5 1.4 Contributions5 Chapter 2 Literature Review 7 2.1 Dummy7 2.2 Dummy Modeling9 2.2.1 Physical modeling 10 2.2.2 Numerical modeling 11 2.3 Crash Test 13 2.4 Dynamic and Kinematic Response 14 2.5 Injuries and Fatalities 15 vii 2.6 Federal Motor Vehicle Safety Standard and Reg- ulations (FMVSS) 16 2.7 Effects of Age and Gender on the Risk of Car Crashes 16 2.8 Percentile Human 18 2.9 Development of Numerical Anthropomorphic Test Devices 19 2.10 Summary 21 Chapter 3 Methodology 22 3.1 Research Flow 23 3.2 Software Verification 24 3.3 Collecting Anthropometric Data 25 3.3.1 Measurement Tools 25 3.3.2 Anthropometric Data 26 3.4 Model Generation 30 3.4.1 Simple Dummy 30 3.4.2 Malaysian Female Anthropometric (MFA) Dummy 33 3.4.2.1 Head 33 3.4.2.2 Body 34 3.4.2.3 Upper extremity model (Arm) 35 3.4.2.4 Lower extremity model (Leg) 36 3.4.2.5 Full assembly multi body 37 3.4.2.6 Chair and Stopper 38 3.4.2.7 Finite Element Dummy 38 3.5 Weight Distribution 39 3.6 Volume and Mass Density 40 3.7 Material Properties 41 3.7.1 General Elastic 41 3.7.2 Spring Element 42 3.7.3 Contact Element 42 3.8 Simulation Strategy 43 3.8.1 Boundary Condition 43 3.8.2 Analysis Run Time Control 44 3.8.3 Trackers 44 3.9 Computer Simulation 47 3.9.1 Processor 47 3.9.2 Post Processor 48 3.9.3 Graph 48 viii 3.10 Simulation Analysis and Assessment 49 3.11 Computer Specification 51 3.12 Units of Measurement 52 Chapter 4 Result and Discussion 53 4.1 Software Verification Results 53 4.2 Simulation Results 55 4.2.1 Simple Dummy Post-processor Visualization 55 4.2.2 Malaysian Female Anthropometric (MFA) Dummy Post-processor Visualization 56 4.3 Graph Results 57 4.3.1 Displacement Graph 57 4.3.2 Motion in Direction Graph 59 4.3.2.1 Velocity Motion 60 4.3.2.2 Acceleration Motion 62 4.3.3 Instant Velocity Graph 64 4.3.3.1 Instant Velocity of the Simple Dummy 65 4.3.3.2 Instant Velocity of the Malaysian Female Anthropometric (MFA) 67 4.3.4 Instant Acceleration Graph 70 4.3.4.1 Instant Acceleration of the Sim- ple Dummy Instant Acceleration 70 4.3.4.2 Instant Acceleration of the MFA Dummy 72 4.4 Results Analysis 75 4.4.1 Displacement Difference 75 4.4.2 Velocity Difference in Motion 76 4.4.3 Acceleration Difference in Motion 77 4.4.4 Instant Velocity Difference 78 4.4.5 Instant Acceleration Difference 79 4.4.6 Node and Element Difference 80 4.4.7 Average Percentage Difference 82 4.5 Head Injury Criterion (HIC) 83 4.6 Discussion 85 Chapter 5 Conclusion and Recommendation 86 5.1 Conclusion 86 5.2 Recommendation 87 References 89 ix Vitae 147 x List of Figures Figure No Title Page 1.1 Registered Motorcar from 2009 to 2013(JPJ, 2014b).2 1.2 Registered driver from 2008 to 2012 (JPJ, 2014a).2 1.3 Statistic of accidents and injuries for 2007-2011 (Po- lice, 2013).3 2.1 Family dummy models.(Inc & GmbH, 2014) 11 2.2 Example of dummy models for different crash test. (Inc & GmbH, 2014) 12 2.3 Dummy kinematics during impact. (Zou & Grzebieta, 2005) 17 2.4 Human percentile. (Michalski & Grobelny, 2014) 18 3.1 Overall flow chart for the research. 23 3.2 Simple model of rectangular hollow tube. 24 3.3 Measurement tools. 26 3.4 Human body measurement layout. 27 3.5 Ethnic proportion. 29 3.6 Age range. 30 3.7 Simple model. 31 3.8 Chair and stopper of simple model. 32 3.9 Simple model with impactor. 33 3.10 Head in wire and shell view. 34 3.11 Body in wire and shell view. 35 3.12 Upper extremity model in wire and shell view. 36 3.13 Lower extremity model in wire and shell view. 37 3.14 Full body assembly. 37 3.15 Chair and stopper of MFA model. 38 3.16 Actual model with imp actor. 39 3.17 Available materials in Impact. 41 3.18 Boundary condition for the chair. 43 xi 3.19 Processor view. 47 3.20 Post processor view. 48 3.21 Plotted graph of acceleration of the head part. 49 3.22 Plotted graph of velocity of the head. 49 3.23 Flow of the analysis and the assessment. 50 3.24 Computer specification. 52 4.1 Visual comparison. 54 4.2 Failure modes contour plots of the perforation process by hemispherical nose projectile impact. (Ibrahim et al., 2014) 54 4.3 Full deflection behavior of simple dummy. 55 4.4 Frontal deflection behavior of MFA dummy. 56 4.5 Graph displacement of simple dummy. 58 4.6 Graph displacement of MFA dummy. 59 4.7 Velocity motion for simple dummy. 60 4.8 Velocity motion for MFA dummy. 61 4.9 Acceleration motion for simple dummy. 63 4.10 Acceleration motion for MFA dummy. 64 4.11 Instant velocity for simple dummy. 66 4.12 Instant velocity for MFA dummy. 68 4.13 Instant acceleration for simple dummy. 71 4.14 Instant acceleration for MFA dummy. 73 4.15 Displacement of simple and MFA dummy. 75 4.16 Velocity in motion of simple and MFA dummy. 76 4.17 Acceleration in motion for simple and MFA dummy. 77 4.18 Velocity of the node vibration for simple and MFA dummy. 78 4.19 Acceleration of the node vibration for simple and MFA dummy. 79 4.20 Nodes number for simple and MFA dummy. 80 4.21 Elements number for simple and MFA dummy. 81 4.22 Average percentage different. 82 4.23 HIC 15. 84 A.1 Head velocity for simple dummy. 100 A.2 Body velocity for simple dummy. 101 A.3 Arm velocity for simple dummy. 102 A.4 Forearm velocity for simple dummy. 103 A.5 Thigh velocity for simple dummy. 104 xii A.6 Leg velocity for simple dummy. 105 A.7 Chair velocity for simple dummy. 106 B.1 Head velocity for MFA dummy. 108 B.2 Body velocity for MFA dummy. 109 B.3 Arm velocity for MFA dummy.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages48 Page
-
File Size-