
Features • High Performance, Low Power AVR® 8-Bit Microcontroller • Advanced RISC Architecture – 131 Powerful Instructions – Most Single Clock Cycle Execution – 32 x 8 General Purpose Working Registers – Fully Static Operation – Up to 24 MIPS Throughput at 24 MHz – On-chip 2-cycle Multiplier • Non-volatile Program and Data Memories – 4/8/16K Bytes of In-System Self-Programmable Flash (ATmega48/88/168) Endurance: 10,000 Write/Erase Cycles 8-bit – Optional Boot Code Section with Independent Lock Bits In-System Programming by On-chip Boot Program True Read-While-Write Operation Microcontroller – 256/512/512 Bytes EEPROM (ATmega48/88/168) Endurance: 100,000 Write/Erase Cycles with 8K Bytes – 512/1K/1K Byte Internal SRAM (ATmega48/88/168) – Programming Lock for Software Security In-System • Peripheral Features – Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode Programmable – One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode Flash – Real Time Counter with Separate Oscillator – Six PWM Channels – 8-channel 10-bit ADC in TQFP and MLF package – 6-channel 10-bit ADC in PDIP Package ATmega48/V – Programmable Serial USART – Master/Slave SPI Serial Interface ATmega88/V – Byte-oriented 2-wire Serial Interface – Programmable Watchdog Timer with Separate On-chip Oscillator – On-chip Analog Comparator ATmega168/V – Interrupt and Wake-up on Pin Change • Special Microcontroller Features – Power-on Reset and Programmable Brown-out Detection – Internal Calibrated Oscillator Preliminary – External and Internal Interrupt Sources – Five Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, and Summary Standby • I/O and Packages – 23 Programmable I/O Lines – 28-pin PDIP, 32-lead TQFP and 32-pad MLF • Operating Voltage: – 1.8 - 5.5V for ATmega48V/88V/168V – 2.7 - 5.5V for ATmega48/88/168 • Temperature Range: –-40°C to 85°C • Speed Grade: – ATmega48V/88V/168V: 0 - 6 MHz @ 1.8 - 5.5V, 0 - 12 MHz @ 2.7 - 5.5V – ATmega48/88/168: 0 - 12 MHz @ 2.7 - 5.5V, 0 - 24 MHz @ 4.5 - 5.5V • Low Power Consumption – Active Mode: 1 MHz, 1.8V: 240µA 32 kHz, 1.8V: 15µA (including Oscillator) – Power-down Mode: 0.1µA at 1.8V Rev. 2545BS–AVR–01/04 Note: This is a summary document. A complete document is available on our Web site at www.atmel.com. Pin Configurations Figure 1. Pinout ATmega48/88/168 PDIP (PCINT14/RESET) PC6 1 28 PC5 (ADC5/SCL/PCINT13) (PCINT16/RXD) PD0 2 27 PC4 (ADC4/SDA/PCINT12) (PCINT17/TXD) PD1 3 26 PC3 (ADC3/PCINT11) (PCINT18/INT0) PD2 4 25 PC2 (ADC2/PCINT10) (PCINT19/OC2B/INT1) PD3 5 24 PC1 (ADC1/PCINT9) (PCINT20/XCK/T0) PD4 6 23 PC0 (ADC0/PCINT8) VCC 7 22 GND GND 8 21 AREF (PCINT6/XTAL1/TOSC1) PB6 9 20 AVCC (PCINT7/XTAL2/TOSC2) PB7 10 19 PB5 (SCK/PCINT5) (PCINT21/OC0B/T1) PD5 11 18 PB4 (MISO/PCINT4) (PCINT22/OC0A/AIN0) PD6 12 17 PB3 (MOSI/OC2A/PCINT3) (PCINT23/AIN1) PD7 13 16 PB2 (SS/OC1B/PCINT2) (PCINT0/CLKO/ICP1) PB0 14 15 PB1 (OC1A/PCINT1) TQFP Top View MLF Top View PD2 (INT0/PCINT18) PD1 (TXD/PCINT17) PD0 (RXD/PCINT16) PC6 (RESET/PCINT14) PC5 (ADC5/SCL/PCINT13) PC4 (ADC4/SDA/PCINT12) PC3 (ADC3/PCINT11) PC2 (ADC2/PCINT10) PD2 (INT0/PCINT18) PD1 (TXD/PCINT17) PD0 (RXD/PCINT16) PC6 (RESET/PCINT14) PC5 (ADC5/SCL/PCINT13) PC4 (ADC4/SDA/PCINT12) PC3 (ADC3/PCINT11) PC2 (ADC2/PCINT10) 32 31 30 29 28 27 26 25 32 31 30 29 28 27 26 25 (PCINT19/OC2B/INT1) PD3 1 24 PC1 (ADC1/PCINT9) (PCINT19/OC2B/INT1) PD3 1 24 PC1 (ADC1/PCINT9) (PCINT20/XCK/T0) PD4 2 23 PC0 (ADC0/PCINT8) (PCINT20/XCK/T0) PD4 2 23 PC0 (ADC0/PCINT8) GND 3 22 ADC7 GND 3 22 ADC7 VCC 4 21 GND VCC 4 21 GND GND 5 20 AREF GND 5 20 AREF VCC 6 19 ADC6 VCC 6 19 ADC6 (PCINT6/XTAL1/TOSC1) PB6 7 18 AVCC (PCINT6/XTAL1/TOSC1) PB6 7 18 AVCC (PCINT7/XTAL2/TOSC2) PB7 8 17 PB5 (SCK/PCINT5) (PCINT7/XTAL2/TOSC2) PB7 8 17 PB5 (SCK/PCINT5) 9 10 11 12 13 14 15 16 9 10 11 12 13 14 15 16 NOTE: Bottom pad should be soldered to ground. (PCINT4/MISO) PB4 (PCINT1/OC1A) PB1 (PCINT4/MISO) PB4 (PCINT23/AIN1) PD7 (PCINT1/OC1A) PB1 (PCINT23/AIN1) PD7 (PCINT2/SS/OC1B) PB2 (PCINT2/SS/OC1B) PB2 (PCINT21/OC0B/T1) PD5 (PCINT21/OC0B/T1) PD5 (PCINT0/CLKO/ICP1) PB0 (PCINT0/CLKO/ICP1) PB0 (PCINT3/OC2A/MOSI) PB3 (PCINT3/OC2A/MOSI) PB3 (PCINT22/OC0A/AIN0) PD6 (PCINT22/OC0A/AIN0) PD6 Disclaimer Typical values contained in this datasheet are based on simulations and characteriza- tion of other AVR microcontrollers manufactured on the same process technology. Min and Max values will be available after the device is characterized. 2 ATmega48/88/168 2545BS–AVR–01/04 ATmega48/88/168 Overview The ATmega48/88/168 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega48/88/168 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed. Block Diagram Figure 2. Block Diagram VCC GND Watchdog Power debugWIRE Timer Supervision POR / BOD & Watchdog PROGRAM Oscillator RESET LOGIC Oscillator Flash SRAM Circuits / Clock Generation CPU EEPROM AVCC AREF GND 2 8bit T/C 0 16bit T/C 1 A/D Conv. Analog Internal 8bit T/C 2 6 Comp. Bandgap DATABUS USART 0 SPI TWI PORT D (8) PORT B (8) PORT C (7) RESET XTAL[1..2] PD[0..7] PB[0..7] PC[0..6] ADC[6..7] 3 2545BS–AVR–01/04 The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers. The ATmega48/88/168 provides the following features: 4K/8K/16K bytes of In-System Programmable Flash with Read-While-Write capabilities, 256/512/512 bytes EEPROM, 512/1K/1K bytes SRAM, 23 general purpose I/O lines, 32 general purpose working reg- isters, three flexible Timer/Counters with compare modes, internal and external interrupts, a serial programmable USART, a byte-oriented 2-wire Serial Interface, an SPI serial port, a 6-channel 10-bit ADC (8 channels in TQFP and MLF packages), a pro- grammable Watchdog Timer with internal Oscillator, and five software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, USART, 2-wire Serial Interface, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or hardware reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low power consumption. The device is manufactured using Atmel’s high density non-volatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot program running on the AVR core. The Boot program can use any interface to download the application program in the Application Flash memory. Soft- ware in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega48/88/168 is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications. The ATmega48/88/168 AVR is supported with a full suite of program and system devel- opment tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators, and Evaluation kits. Comparison Between The ATmega48, ATmega88 and ATmega168 differ only in memory sizes, boot loader ATmega48, ATmega88, support, and interrupt vector sizes. Table 1 summarizes the different memory and inter- and ATmega168 rupt vector sizes for the three devices. Table 1. Memory Size Summary Device Flash EEPROM RAM Interrupt Vector Size ATmega48 4K Bytes 256 Bytes 512 Bytes 1 instruction word/vector ATmega88 8K Bytes 512 Bytes 1K Bytes 1 instruction word/vector ATmega168 16K Bytes 512 Bytes 1K Bytes 2 instruction words/vector ATmega88 and ATmega168 support a real Read-While-Write Self-Programming mech- anism. There is a separate Boot Loader Section, and the SPM instruction can only execute from there. In ATmega48, there is no Read-While-Write support and no sepa- rate Boot Loader Section. The SPM instruction can execute from the entire Flash. 4 ATmega48/88/168 2545BS–AVR–01/04 ATmega48/88/168 Pin Descriptions VCC Digital supply voltage. GND Ground. Port B (PB7..0) XTAL1/ Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each XTAL2/TOSC1/TOSC2 bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages25 Page
-
File Size-