THE UNIVERSITY OF HULL The Role of Soft Tissues and Minor Osseous Structures in Cranial Biomechanics Being a Thesis submitted for the Degree of Doctor of Philosophy (PhD) In the University of Hull by Víctor Sellés de Lucas, MSc (Hons) School of Engineering and Computer Science University of Hull November 2019 Abstract Finite element analysis is now widely recognised as an invaluable technique to investigate and understand cranial biomechanics since it can incorporate the complexity of a skull’s geometry, its construction, different materials and complex loadings. However, while the biofidelity of some aspects of these models is increasing, most still only consider the larger bony structures of the skull. This study examines the role of soft tissues and some smaller bony parts, to determine whether they should also be incorporated in such studies of cranial biomechanics. The structures that have been investigated include: the dura mater, the falx cerebri and the tentorium cerebelli, the periodontal ligament, the nasal turbinates and the osseous nasal septum, the postorbital bars and septa and the bulk tissues that surround the cranial bones. They are considered both in terms of their functional role and as part of the general functioning of the FE model that includes them. For this purpose, two FE models were used: a model of a Felis silvestris catus , which was created specifically for this project, and an adaptation of a previous head model of Homo sapiens . The results reveal that in Felis silvestris catus , the osseous tentorium does play a minor role in reducing stress in the parietal and temporal bones during feeding activities regarding of the biting regime. The causes of ossification and its possible mechanical role in several mammalian lineages, however, remain currently unclear. Moreover, inclusion of the nasal turbinates and the osseous part of the nasal septum is advisable in future FE models, as they impact the pattern of stress in the cranium, but the presence of generic bulk soft tissues in an FE model does not seem to have a meaningful effect on the results. On the other hand, modelling of the periodontal ligament has a localised effect in the alveolar region, but does not alter the general pattern of stress in the cranium. In the Homo sapiens model, the postorbital bars and the postorbital septa not only help reduce strain in various areas of the cranium, but also shelter the contents of the orbit and avoid distortion of the eye. The postorbital septa also reduce strain in the postorbital bars and minimize asymmetrical deformation between the working and balancing sides in unilateral molar bites. Altogether, this thesis offers a body of work which future researchers may find useful when investigating cranial biomechanics, to avoid oversimplification or incorporation of unnecessary complexities. II Acknowledgments I would like to to express my sincerest thanks to my supervisors Peter Watson and Michael Fagan for their continuous advice, endless support and encouragement throughout the extent of this project. I would also extend my gratitude to the University of Hull for funding this PhD and to the Biotechnology and Biological Sciences Research Council (BBSRC) for supporting the project. I am very grateful to the members of the Medical and Biological Engineering Research Group, in particular to Sue Taft for performing the Felis silvestris catus CT scans, to Manuel Pinheiro, Ali Dostan and Joseph Libby for their company, suggestions and support, and to the other colleages of the Soft tissues in cranial biomechanics project, Hugo Dutel, Flora Gröning, Alana Sharp and Susan Evans for their unvaluable comments and contributions. Finally, I will take this opportunity to thank my family and friends, for their patience and generosity. III Table of Contents Table of Contents ........................................................................................................... IV List of Figures ................................................................................................................. IX List of Tables ............................................................................................................. XVIII Glossary ......................................................................................................................... XX Chapter 1. Introduction ..................................................................................................... 1 1.1. Chapter organization .............................................................................................. 3 Chapter 2. Literature Review............................................................................................ 5 2.1. Introduction ............................................................................................................ 5 2.2. The mammalian skull ............................................................................................. 5 2.2.1. Anatomy of the mastication muscles ......................................................... 7 2.2.2. The particularities of the human head ........................................................ 8 2.3. The postorbital bar and ligament ......................................................................... 10 2.4. The postorbital septum ......................................................................................... 16 2.5. Scalp and meninges ............................................................................................. 17 2.5.1. Scalp ......................................................................................................... 17 2.5.2. The dura mater and dural folds ................................................................ 18 2.5.3. Function ................................................................................................... 19 2.5.4. Comparative anatomy and ossification of the dural folds ....................... 21 2.5.5. Anatomy of the tentorium cerebelli ......................................................... 23 2.5.6. Tentorial index ......................................................................................... 25 2.5.7. Ossification in humans ............................................................................. 28 2.6. Techniques for 3D cranial digitalization, modelling and analysis ....................... 30 2.6.1. Vertebrate Biomechanics and digital biomechanical models .................. 30 2.6.2. Digitalization techniques: CT and MRI ................................................... 31 2.6.3. Finite Element Analysis ........................................................................... 32 IV 2.6.3.1. Pre-processing ....................................................................................... 33 2.6.3.2. Solution and Post-processing ................................................................ 35 2.6.3.3. Validation .............................................................................................. 35 2.6.4. Soft-tissue modelling in previous FE models .......................................... 36 2.7. Conclusions .......................................................................................................... 42 Chapter 3. A study of dural ossification in Mammalia................................................... 43 3.1. Introduction .......................................................................................................... 43 3.2. Materials and Methods ......................................................................................... 46 3.3. Dural ossification in Mammalia .......................................................................... 47 3.3.1. Monotremata ............................................................................................ 47 3.3.2. Marsupialia .............................................................................................. 49 3.3.2.1. Didelphimorphia, Paucituberculata and Microbiotheria ....................... 49 3.3.2.2. Dasyuromorphia .................................................................................... 50 3.3.2.3. Peramelemorphia ................................................................................... 51 3.3.2.4. Diprotodontia ......................................................................................... 52 3.3.3. Placentals ................................................................................................. 54 3.3.3.1. Xenarthra ............................................................................................... 54 3.3.3.2. Primates ................................................................................................. 57 3.3.3.2.1. Strepsirhini ..................................................................................... 58 3.3.3.2.2. Haplorhini ....................................................................................... 60 3.3.3.3. Carnivora ............................................................................................... 64 3.3.3.4. Sirenia .................................................................................................... 68 3.3.3.5. Perissodactyla and Artiodactyla ............................................................ 69 3.3.3.6. Cetacea................................................................................................... 70 3.3.3.7. Artiodactyla ........................................................................................... 72 3.3.3.8. Tubulidentata and Pholidota
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages261 Page
-
File Size-