Type IIA String in Ads4 X CP3 Superspace

Type IIA String in Ads4 X CP3 Superspace

PeculiaritiesPeculiarities ofof StringString TheoryTheory onon 33 AdSAdS44 ×× CPCP DmitriDmitri SorokinSorokin INFN, Sezione di Padova ArXiv:0811.1566 J. Gomis, D.S., L. Wulff ArXiv:0903.5407 P.A.Grassi, D.S., L.Wulff ArXiv:0911.5228 A.Cagnazzo, D.S., L.Wulff ArXiv:1009.3498 D.S. and L. Wulff GGI, Arcetri, September 30, 2010 3 5 AdSAdS4×× CPCP versusversus AdSAdS5×× SS (peculiarities and issues) 3 Superstring theory on AdS4xCP is not maximally supersymmetric, it preserves 24 of 32 susy. The symmetry group is OSp(6|4) – The complete theory is not described by a supercoset sigma-model – The proof of it’s classical integrability turned out to be much tricky some issues have not beebeenn completely settled on the boundaboundaryry and bulk side of the AdS4/CFT3 holography: – Bethe ansatz CFT anomalous dimensions versus spinning string energy – subtleties in matching worldsheet degrees of freedom with those of S-matrix scattering theory (light and heavy worldsheet modes) – issue of the dual superconformal symmetry and fermionic T-duality 3 3 The AdS4xCP theory admits string instantons wrapping 2-cycles of CP . 2 GreenGreen--SchwarzSchwarz superstringsuperstring in a generic supergravity background S= − d2 ξ − det g− B ∫ ij ∫ 2 (ZXM= ,M ), Θα M = 0,1,...,9; α =1 ,..., 32 M α et ( ,pullbackBX )2 -Θ of worldshe the NS - NS 2 - form guage field A B gij= E- i j η EAB worldsheeinduced t metric A Μ A ( ) (EZEX ,i = ) ∂i - ξ M Θpullback ofin supevielbe theof D vector= 10 sugra 0 , 1A = ,..., 9 ; α Μ α E(= dZ ,M ) E -Θ X einspinorsupervielb of D= 10 sugra A A A BC A A BC Θ =E( +M ,X ) Ψ eM ( Γ ) XM Θ ( + ) X ωM ΘΓ BC ΓH MBC Θ + ΘΓ Γ Θ Φ A BC A BCDK + ΘΓe Γ F BC Γ ΘM +FBCDK ΘΓM Γ Γ Θ + ⋅ ⋅ ⋅ are obtained from ty superfieldconstraintty s= supergraviequationssupergravi of motion : A AA B α A β 3 T XΘ ≡ dE + Ω B E2( = i ,αβ E ) Γ E FermionicFermionic kappakappa--symmetrysymmetry Provided that the superbackground satisfies superfield supergravity aints (or, equivalently,nstrcosugra uperstring the GS s),nseld equatioif action is invariant under the following local worldsheet transformations M M α M of the string coordinates Z (ξ)=(X , Θ ), δκ Z : Μ A Μ α 1 α β ZEXδ( , )Θ 0 , = ZEX δ (,)Θ =( Ι ) +κβ Γ ( ξ ), κ M κ M 2 1 Γ = εEEij,ΓAB Γ 11 Γ2, = Ι tr Γ = 0 2− detg i j AB Due to the projector, the fermionic parameter κα(ξ) has only 16 independent components. They caf 1/2 oy gauge awan be used to 32 fermionic worldsheet fields Θα(ξ) 4 33 AdSAdS44×× CPCP superbackgroundsuperbackground Preserves 24 of 32 susy in type IIA D=10 superspace • The superstring action is not a supercoset sigma-model of OSp(6|4) • the explicit proof of the classical integrability of the complete AdS4 x CP3 superstring has been lacking until recently (D.S.& L.Wulff, 09/2010) 3 fermionic modes of the AdS4× CP superstring are of different nature: Θ32(ξ)=(ϑ24, υ8) unbroken broken susy *F =F ϑ24=P24 Θ, υ8 =P8 Θ, P24 + P8 = I 4 6 a’b’ 1L 6 P24 =1/8 (6-Γ Ja’b’Γ7), Γ7 = Γ1LΓ6 ε 3 3 a’,b’=1,…,6 - CP indices, Ja’b’ - Kaehler form on CP 5 F2 OSpOSp(6|4)(6|4) supercosetsupercoset sigmasigma modelmodel It is natural to try to get rid of the eight “broken susy” fermionic modes υ8 using kappa-symmetry υ8=0 - partial kappa-symmetry gauge fixing Remaining string modes are: 3 a a’ 10 (AdS4 ×CP ) bosons x (ξ) (a=0,1,2,3), y (ξ) (a’=1,2,3,4,5,6) 24 fermions ϑ(ξ) corresponding to unbroken susy they parametrize coset superspace OSp(6|4)/U(3)xSO(1,3) ⊃ AdS4xCP3 5 - similar to the AdS5 × S string action on SU(2,2|4)/SO(1,4)xSO(5) Cartan forms: α=1,…,4 α’=1,…,6 -1 a a’ αα’ K dK=E (x,y,ϑ) Pa + E (x,y,ϑ) Pa’ + E (x,y,ϑ) Qαα’ + Ω (x,y,ϑ) M Sigma-model action on OSp(6|4)/U(3)xSO(1,3) (Arutyunov & Frolov; Stefanskij; D'Auria, Frè, Grassi & Trigiante, 2008) 2 A B 1/2 αα’ ββ’ 5 S=∫ d ξ (- det Ei Ej ηAB) + ∫ E ∧ E Jα’β’ γ αβ 6 OSpOSp(6|4)(6|4) supercosetsupercoset sigmasigma modelmodel A problem with this model is that it does not describe all possible string configurations. E.g., it does not describe a string moving in AdS4 only, or the string instanton in CP3 Reason – kappa-gauge fixing υ8 = P8Θ =0 is inconsistent in the AdS4 region and for the string instanton in CP3 only ½ of υ can be eliminated [(1+Γκ) , P8 ]=0 υ8 To describe these string configurations the GS superstring action in 3 AdS4 x CP superspace with 32 fermionic coordinates is required (it is not a coset superspace) 3 7 AdS4× CP sugra solution is related to AdS4× S (with 32 susy) in D=11 by dimenisonal reduction (Nilsson and Pope; D.S., Tkach & Volkov 1984) This superspace was construconstructedcted by performing the dimensional reduction of D=11 coset superspace OSp(8|4)/SO(7)xSO(1,3) which has 32 Θ and 7 bose subspace AdS4 x S , SO(2,3)xSO(8) ⊂ OSp(8|4) (Gomis, D.S., Wulff, 2008) 7 HopfHopf fibrationfibration ofof OSpOSp(8|4)/(8|4)/SOSO(7)(7)××SOSO(1,3)(1,3) KK11,32 - D=11 superspace with the bosonic subspace 7 AdS4× S and 32 fermionic directions 1 KK11,32 == MM10,32 ×× S (locally) base fiber MM10,32 - D=10 superspace with the bosonic subspace 3 AdS4× CP , 32 fermionic directions and OSp(6|4) isometry (but it is not a coset space) MM10,32 is the superspace we are looking for 8 ClassicalClassical IntegrabilityIntegrability ofof 2d2d dynamicaldynamical systemssystems The existence of ∞ # of conserved currents and charges The charges are generated by the Lax connection L L (ξ,z) – 2d one-form which depends on a spectral parameter z,z, takes values in a symmetry algebra and has zero curvature: dL + L ∧ L = 0 (on the mass-shell) The integrability is proven if one manages to construct L (ξ,z) No generic prescription exists how to do this 9 ClassicalClassical IntegrabilityIntegrability ofof 2d2d dynamicaldynamical systemssystems G/H supercoset sigma-models with Z4-grading, e.g. 5 - AdS5 × S superstring, SU(2,2|4)/SO(1,4) × SO(5), Bena, Roiban, Polchinski ‘03 - OSp(6|4)/SO(1,3) × U(3) sigma-model Cartan forms: -1 2 1 3 K dK=Ω (x,ϑ) M0 + E (x,ϑ) P2 + E (x,ϑ) Q1 + E (x,ϑ) Q3 [M0,M0]=M0, [P2,P2]=M0, {Q1,Q1}=P2={Q3,Q3}, {Q1,Q3}=M0 Lax connection: 2 2 1 3 L = Ω (x,ϑ)+l1 E (x,ϑ)+l2*E (x,ϑ)+l3 E (x,ϑ)+l4 E (x,ϑ) Coefficients l =f (z) are functions of the dL + L ∧ L = 0 i i spectral parameter on shell 10 3 LaxLax connectionconnection ofof thethe AdSAdS4×× CPCP superstringsuperstring (D.S. & L. Wulff, ArXiv:1009.3498) Use the OSp(6|4) conserved Noether current J=JB+JS SO(2,3) × SU(4) M A [AB] JB(X,ϑ,υ)= dX KM (X)+J1 (X,ϑ,υ)KA+J2 (X,ϑ,υ)KAKB JS(X,ϑ,υ) – susy current Lax connection: L = α K(X) + α *J + (α )2 J + α α *J - α (β J - β *J ) L 1 2 B 2 2 1 2 2 2 1 S 2 S 4 + O (X,ϑ,υ ) + L 11 3 SuperstringSuperstring actionaction inin AdSAdS4×× CPCP superspacesuperspace (up to the second order in fermions and Wick-rotated) [Cvetic’ et al. 1999] 3 AdS4 CP F4 and F2 fluxes Bosonic instanton solution In CP3 there is a topologically nontrivial 2-cycle ~ S2 associated with the Kahler 2-form J2 In the Wick-rotated theory, string worldsheet can wrap this S2 ⊂ CP3, thus forming a stringy instanton. It is ½ BPS Θ=0 and xa=const (AdS-coordinates); on CP3 complex yI=yI(z) are holomorphic functions of the worldsheet coordinates the Virasoro constraints are identically satisfied: 12 StringString instantoninstanton onon CPCP33 A.Cagnazzo, L.Wulff and D.S. ArXiv:0911.5228 ABJABJ Instanton action * 2 ∫ B2, B2 ∼ J2, d J2=d J2=0 – Kaehler form on CP Θ=1/2(1-Γ)Θ = (ϑ, υ) – gauged fixed kappa-symmetry, 16 physical fermions Twelve fermionic zero modes, i.e. solutions of the 2d Dirac equation: υ=0 8 zero modes are 4 pairs of Killing spinors on S2 4 zero modes are massless charged fermions interacting with a monopole field on S2 13 FermionicFermionic zerozero modesmodes The 12 fermionic zero modes are goldstinos which manifest breaking of 3 the ½ susy of the AdS4 x CP background by the string instanton M A A 24 target-space susy: δϑ =εεKilling , δ X eM (X) =iϑ Γ εεKilling 3 AdS4 x CP Killing spinor equation projected on the instanton 2 i (1+Γ ) ϑ=0 S κ ( )∇i 0 +γ i ϑ + = 8 fermions i R ∇( M +γM Γ)5 ϑ 0 = S 2 R ( )∇i 0 +iAγi 3 ϑ − =4 fermions This fermionic zero modes solve also the complete non-linear string e.o.m 14 DiscussionDiscussion There also exists an NS5-brane instanton wrapping the whole CP3 What are the 3d CFT counterparts of the string/brane instantons? What are possible effects of the stringy instantons on the structure of the supergravity and superstring theory on 3 AdS4 ×CP ? May their existence result in peculiarities of the AdS4 /CFT3 correspondence? Drukker, Mariño & Putrov (arXiv:1007.3837) found contributions coming from world-sheet instanons to the partition function and Wilson loop observables computed in a matrix model description of ABJ(M) theory 15.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    15 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us