Recent Total Synthesis of Monoterpene Indole Alkaloids

Recent Total Synthesis of Monoterpene Indole Alkaloids

Inoue Group - Group Meeting Problems 6/25/2016 Provide a reasonable mechanism for these reactions. 1 2-bromofuran NHAllyl CuTC*, DMEDA** O Cs2CO3 MgI2 toluene, 90 °C toluene, 120 °C N Ac N NHAc (sealed tube) Allyl 82% 60% * CuTC = copper(I) thiophene-2-carboxylate ** DMEDA = N,N'-dimethylethylenediamine C. A. Leverett, G. Li, S. France and A. Padwa, J. Org. Chem., ASAP (2016) (doi: 10.1021/acs.joc.6b00771) 2 NHNs 1) OsO4, NMO OH OH acetone-H2O, rt 92% NNs N 2) TFA, ClCH2CH2Cl Boc rt to 80 °C N 76% G. Li, X. Xie and L. Zu, Angew. Chem. Int. Ed., Early View (2016) (doi: 10.1002/anie.201604770) 3 [Au(PPh3)]NTf2 (5 mol%) AgOTf (2 mol%) 2-bromopyridine N-oxide (2 eq.) MsOH (1.3 eq.), TFA (1.1 eq.) N ClCH2CH2Cl, rt; piperidine (0.4 eq.) N N H AgOTf (1 eq.) HFIP, 150 °C ( W) N H O H NaHCO3 aq., rt 56% 74% Y. Zhang, Y. Xue, H. Yuan and T. Luo, Chem. Sci., Advance Article (2016) (doi: 10.1039/c6sc00932h) CO2 Me OH O O2C H Me N N H N H N NMe N N O H Me H Et O H N O CO2Me Me H Minfiensine Calophyline A Catharanthine Inoue Group - Group Meeting Problems D3 E. Yoshida 0. Monoterpene indole alkaloid 0-1. Outline of biosynthesis 6/25/2016 OHC NH OGlc N monoterpene NH + H H N 2 OGlc indole alkaloids H O MeO2C O MeO2C tryptamine (0-1) secologanin (0-2) strictosidine (0-3) 0-2. Skeletally rearranged derivatives strictosidine (0-3) -Glc N N N NH N N H H H H O N H H H Me N Me CO2Me H OH MeO2C CO2Me MeO2C OH OH 0-4 geissoschizine (0-5) stemmadenine (0-6) dehydrosecodine (0-7) N N H N N N N H H N N CO2Me CO2Me H H CO2Me CO2Me catharanthine (0-8) dehydrosecodine (0-7) tabersonine (0-9) 0-3. Classification by carbon structures N N N H N N H N Me CO Me MeO C 2 H 2 CO2Me OH geissoschizine (0-5) catharanthine (0-8) tabersonine (0-9) OHC CHO MeO2C CHO 0-10 corynanthe type (0-11) iboga type (0-12) aspidosperma type (0-13) This carbon is sometimes removed by decarboxylation. 1 0-4. Selected examples of monoterpene indole alkaloids N N N O O N MeN NH OH N MeO N OAc O Me O O CO2Me MeO from acetyl-CoA OMe Gelsemine (0-14) Strychnine (0-15) Vindoline (0-16) Isoschizogamine (0-17) corynanthe type (C10) corynanthe type(C9) aspidosperma type (C10) aspidosperma type (C9) CO2 OH O Me N N N H N H O H Me Me Calophyline A (0-18) corynanthe type (C10) Minfiensine (0-19) corynanthe type? (C9) 0-5. Characteritics of indole chemistry • C-3 and C-2 are easy to functionalize. • C-3 is 10^13 times more reactive to electrophiles than benzene. • C-2 is easily functionalized by lithiation. • Indole synthesis is needed especially when C-4 to C-7 are functionalized. R Heck 4 R 5 3 Fukuyama Prefunctionalization of C-4 to C-7. 2 N 6 N Buchwald-HartwigH Fischer, aminometallation 7 H • The asymmetric construction of C-3 quatenary center is a major synthetic challange. • Indoles are easily oxidized due to the electron richness. However, a protecting group of N-1 is very limited. Only Boc and ArSO2 are useful. 1. Total synthesis of (±)-Minfiensine 1-1. Retrosynthesis Diels-Alder reaction NH2 OH enolate O coupling alkylation; N N X O H N aminal or Heck N Me H formation Me N Minfiensine (1-1) 1-2 1-3 The ethylidene unit dramatically narrows the retrosynthesis as is often the case with corynanthe alkaloids. 2 1-2. Reaction mechanism 2-bromofuran NHAllyl CuTC*, DMEDA** O Cs2CO3 MgI2 toluene, 90 °C toluene, 120 °C N Ac N NHAc (sealed tube) Allyl 82% 1-460% 1-5 * CuTC = copper(I) thiophene-2-carboxylate ** DMEDA = N,N'-dimethylethylenediamine Br O NHAllyl NHAllyl NHAllyl 1-7 -H O A B I N NHAc N Cu Ac Ac 1-4 1-6 1-8 NHAllyl NHAllyl O O MgII C D N N Ac Ac 1-9 Step 1 1-10 NHAllyl NHAllyl NHAllyl O MgII O O H E N N N Ac Ac Ac H 1-11 1-12 1-13 O N Ac N Allyl 1-5 Step 2 Buchwald-Hartiwig coupling and Diels-Alder reaction. A: Formation of copper(I) amidate. B: Formal oxidative addition and reductive elimination.* C: Diels-Alder reaction. D: Lewis-acid promotes the cleavage of the strained C-O bond. E: 1,2-hydride shift. * The mechanism is still being discussed. see: S. L. Buchwald et al., J. Am. Chem. Soc., 131, 78 (2009) 3 1-3. Asymmetric total syntheses • Asymmetric Heck Reaction O 1-15 Ph2P N t-Bu Me Me NHBoc N 1-16 NHBoc Me Me Me OTf Pd(OAc)2 TFA N toluene CH2Cl2 N MeO2C N 170 °C ( W); N 0 °C Boc CO2Me CO2Me 1-14 1-1775%, 99% ee 1-18 A. B. Dounay, L. E. Overman and A. D. Wrobleski, J. Am. Chem. Soc., 127, 10186 (2005) • Organocatalytic Diels-Alder reaction O (15 mol%) NMe 1-20 NHBoc 1-Naph N t-Bu H•HO2CCBr3 NaBH4 CHO CeCl3•7H2O OH MeOH N SMe Et2O PMB N N SMe –50 °C –50 °C to rt Boc PMB 1-19 87%, 96% ee 1-21 S. B. Jones, B. Simmons and D. W. C. MacMillan, J. Am. Chem. Soc., 131, 13606 (2009) • Asymmetric Tsuji-Trost reaction NHBoc Pd2(dba)3 (2 mol%) ligand 1-24 (4.5 mol%) O O K2CO3 NH PPh2 OCO Me 2 N Ph2P HN toluene, 50 °C Ac N N Allyl H 91%, 89% ee 1-22 1-23 ligand 1-24 Z.-X. Zhang, S.-C. Chen and L. Jiao, Angew. Chem. Int. Ed., Early View (2016) (doi: 10.1002/anie.201602771) 4 2. Total synthesis of (±)-Calophyline A 2-1. Related natural products OHC CO2Me OHC CO2Me N N 1,2-migration H H (rare) N N N N H Me MeO2C OH Rhazimal (2-2) Me The C-N bond migrates. 2-5 Me dehydrogeissoschizine (2-1) 1,2-migration (popular) CO2Me CO2 CO2Me O MeO Me Me N N N N H N H N H O H Me Me Vincorine (2-4) 2-3 Calophyline A (2-6) 2-2. Retrosynthesis Me Me O O2C H H aldol HO2C NH NMe N O see 1-1 N N O O H N Calophyline A (2-6) 2-7 2-8 2-3. Reaction mechanism NHNs 1) OsO4, NMO OH OH acetone-H2O 92% NNs N 2) TFA, ClCH2CH2Cl Boc 23 to 80 °C N 2-976% 2-10 NHNs NHNs NHNs OH OH OH2 OsO4 OH -Boc OH A B N N N OH Boc Boc OH H 2-9 2-11Step 1 2-12 5 NHNs NsHN NsHN OH OH OH +H OH OH N OH N N H 2-12 2-12' 2-13 NsHN NsHN NsHN OH OH OH +H OH2 C N N H N H 2-14 2-15 2-16 OH OH NNs NNs N N H Step 2 2-17 2-10 Aza-pinacol rearrangement. A: The bulky Boc group or the directing hydroxy group are responsible to the complete facial selectivity of osumium-catalyzed dihydroxylation. B: Aza-pinacol rearrangement. C: Conjugate addition. 2-4. Another application Me NNs I 1) OsO4, NMO 1) ClCO2Me acetone-H2O, rt NsN I NaH, THF, rt O OH 94% O 83% I N 2) p-TsOH•H2O 2) PhSH, MeCN, rt; MeO C N Me N benzene, 85 °C 2 Boc p-TsOH•H2O, 85 °C 81% 67% N 2-18 2-19 2-18 Minfiensine precursor Y. Yu, G. Li, L. Jiang and L. Zu, Angew. Chem. Int. Ed., 54, 12627 (2015) 3. Formal synthesis of Catharanthine 3-1. Retrosynthesis known 1,2-rearrangement H N conversion N (Stevens rearrangement) O HN N N N H Et H CO2Me O Catharanthine (3-1) 3-2 3-3 N N N O N O 6 H H 3-2. Reaction mechanism [Au(PPh3)]NTf2 (5 mol%) AgOTf (2 mol%) 2-bromopyridine N-oxide (2 eq.) MsOH (1.3 eq.), TFA (1.1 eq.) N ClCH2CH2Cl, rt; piperidine (0.4 eq.) N N H AgOTf (1 eq.) HFIP, 150 °C ( W) N H O H NaHCO3 aq., rt 3-456% 3-2 74% 3-6 N Br H O N N N H AN H B H H 3-4 3-5 AuI Br H H N N N OMs O O N H C N H H H AuI 3-7Au 3-8 H N H O +H N -H O N H H OMs N H H OMs 3-9Au 3-10 Ag O MsO N O O N D N N H H OMs N H N H H H 3-11 3-12 3-13 Step 1 N N +piperidine see 3-2 hydrolysis N N 3-2 E H N N H H 3-14 3-15 Step 2 Stevens rearrangement. A: Protonation of amine under the acidic conditions. B: Nucleophilic attack to the more cationic site. C: Generation of gold(I) carben. D: Silver(I) activates the methansulfonate.* E: Enamine- catalyzed Stevens rearrangement. * The counteranion is not determined. 7 3-3. Discussion on 1,2-rearrangement H N N 1,2-rearrangement N N HN unknown mechanism H N 3-14 3-15 • Concerted pathway (theoretically denied) H H N N N N N HN HN N H N 3-14 3-15 retention of stereochemistry 1,2-carbanion rearrangement* is symmetrically forbidden.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    9 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us