WO 2015/012935 A2 29 January 2015 (29.01.2015) P O P C T

WO 2015/012935 A2 29 January 2015 (29.01.2015) P O P C T

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/012935 A2 29 January 2015 (29.01.2015) P O P C T (51) International Patent Classification: Bart Dean [US/US]; 2691 Daunet Ave., Simi Valley, Cali B64C 27/26 (2006.01) B64C 27/54 (2006.01) fornia 93065 (US). PARKS, William Martin [US/US]; B64C 5/02 (2006.01) B64C 39/02 (2006.01) 2805 North Woodrow Ave., Simi Valley, California 93065 B64C 9/00 (2006.01) G05D 1/08 (2006.01) (US). GANZER, David Wayne [US/US]; 4607 Kleberg B64C 25/00 (2006.01) B64C 29/00 (2006.01) St., Simi Valley, California 93063 (US). FISHER, Chris¬ topher Eugene [US/US]; 4 1 Los Vientos Dr., Thousand (21) International Application Number: Oaks, California 91320 (US). MUKHERJEE, Jason Sid- PCT/US20 14/036863 harthadev [US/US]; 605 Muirfield Ave., Simi Valley, (22) International Filing Date: California 93065 (US). KING, Joseph Frederick 5 May 2014 (05.05.2014) [US/US]; 10540 Gaviota Ave., Granada Hills, California 91344 (US). (25) Filing Language: English (74) Agent: DAWSON, James K.; 1445 E. Los Angeles Ave., English (26) Publication Language: Suite 108, Simi Valley, California 93065-2827 (US). (30) Priority Data: (81) Designated States (unless otherwise indicated, for every 3 May 2013 (03.05.2013) 61/819,487 US kind of national protection available): AE, AG, AL, AM, (71) Applicant: AEROVIRONMENT, INC. [US/US]; 181 W . AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, Huntington Drive, Suite 202, Monrovia, California 91016 BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (US). DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (72) Inventors; and KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (71) Applicants (for US only): TAYLOR, Dana J. [US/US]; MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 33 1 Innwood Rd., Simi Valley, California 93065 (US). OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, TOKUMARU, Phillip T. [US/US]; 748 W. San Andres SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, Circle, Thousand Oaks, California 9 1360 (US). HIBBS, [Continued on nextpage] (54) Title: VERTICAL TAKEOFF AND LANDING (VTOL) AIR VEHICLE (57) Abstract: A flight control apparatus for fixed-wing air craft includes a first port wing ( 115) and first starboard wing (120), a first port swash plate (145) coupled between a first port rotor 155) and first port electric motor (135), the first port electric 5 motor (135) coupled to the first port wing ( 115), and a first starboard swash plate (150) coupled between a first starboard rotor (130) and first starboard elec tric motor (140), the first starboard electric motor (140) coupled to the first starboard wing (120). < w o 2015/012935 \ 2 llll II II 11III II I III II II III 11III II I II TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, Declarations under Rule 4.17: ZW. — as to applicant's entitlement to apply for and be granted (84) Designated States (unless otherwise indicated, for every apatent (Rule 4.1 7( )) kind of regional protection available): ARIPO (BW, GH, — as to the applicant's entitlement to claim the priority of GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, the earlier application (Rule 4.17( i)) UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, Published: EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, — without international search report and to be republished LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, upon receipt of that report (Rule 48.2(g)) SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). Vertical Takeoff and Landing (VTOL) Air Vehicle BACKGROUND Field of the Invention [001] The field of the invention relates to aircraft flight control, and more particularly to aircraft flight control of rotary fixed-wing aircraft. Description of the Related Art [002] Many applications exist for remotely or autonomously-piloted unmanned aerial vehicles (UAVs) that are able to take off, loiter, and land without the benefit of a runway. Vertical takeoff and landing (VTOL) vehicles address this limitation and may come in the form of hand-launched aerial vehicles having a main wing and a vertical/horizontal tail control surfaces, or three or four-rotor copters that are operable to take off and land vertically. Aerial vehicles having a main wing and vertical/horizontal tail control surfaces tend to be more efficient and faster in cruise, while rotor copters are less efficient in forward flight but have takeoff and landing advantageous. [003] A need continues to exist to design and manufacturer aerial vehicles that are efficient in flight and that can takeoff and land vertically. SUMMARY [004] A flight control apparatus is disclosed for fixed-wing aircraft that includes a first port wing and a first starboard wing, a first port swash plate coupled between a first port rotor and a first port electric motor, the first port electric motor coupled to the first port wing, and a first starboard swash plate coupled between a first starboard rotor and a first starboard electric motor, the first starboard electric motor coupled to the first starboard wing. The apparatus may also include a second port wing and second starboard wing, a second port swash plate coupled between a second port rotor and second port electric motor, the second port electric motor coupled to the second port wing, and a second starboard swash plate coupled between a second starboard rotor and second starboard electric motor, the second starboard electric motor coupled to the second starboard wing. In one embodiment, the apparatus may include a horizontal stabilizer coupled to a fuselage and an elevator rotatably coupled to the horizontal stabilizer, the fuselage coupled between the first port wing and second starboard wing, and may include a port aileron rotatably disposed on a trailing edge of the first port wing and a starboard aileron rotatably disposed on a trailing edge of the first starboard wing. The apparatus may include first and second landing gear attached to the first port wing and first starboard wing, respectively, and may include a third landing gear attached to the horizontal stabilizer. [005] A method of flight control for fixed-wing aircraft is also disclosed that includes inducing a right roll of a fuselage coupled between a first port wing and a first starboard wing, in response to i) generating in a first port rotor a positive rotational moment in response to actuation of a first port swash plate, the first port rotor rotatably coupled to the first port wing, and ii) generating in a first starboard rotor a negative rotational moment in response to actuation of a first starboard swash plate, the first starboard rotor rotatably coupled to the first starboard wing. In some embodiments, the method may include generating asymmetric collective control between the first port rotor and the first starboard rotor to induce a yaw moment about the fuselage. When used together, the asymmetric collective control, positive rotational moment and negative rotational moment can enable a coordinated turn of the port and starboard wings. In one embodiment, the method may also include inducing a left roll of a fuselage in response to generating in the first port rotor a negative rotational moment in response to actuation of the first port swash plate and generating in the starboard rotor a positive rotational moment in response to actuation of the first starboard swash plate. The method may also include providing pitch control of the fuselage in response to asymmetric collective control provided between at least the first port rotor and a second port rotor rotatably coupled to a second port wing, the second port wing coupled to the fuselage. In one embodiment, the method may include providing pitch control of the fuselage in response to providing differential angular velocities (RPM) between at least the first port rotor and a second port rotor rotatably coupled to a second port wing, the second port wing coupled to the fuselage, and may include providing pitch control of the fuselage in response to providing differential angular velocities (RPM) between the first starboard rotor and a second starboard rotor rotatably coupled to a second starboard wing. Further embodiments may include providing elevator control complementary to the providing pitch control to supplement the pitching moment with an additional pitching moment. In one embodiment, the method may include providing pitch control of the fuselage in response to actuating an elevator. Right roll of the fuselage may be induced in response to generating in a second port rotor a positive rotational moment in response to actuation of a second port swash plate, the second port rotor rotatably coupled to a second port wing, and generating in a second starboard rotor a negative rotational moment in response to actuation of a second starboard swash plate, the second starboard rotor rotatably coupled to a second starboard wing so that the positive and negative moments of force generated in the second port rotor and second starboard rotor induce a right roll of the second port and second starboard wings. The method may also include supplementing the right roll of the fuselage in response to actuating port and starboard ailerons rotatably coupled to the second port wing and second starboard wing, respectively.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    45 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us