Biogeochemistry of Wetlands Nitrogen

Biogeochemistry of Wetlands Nitrogen

Institute of Food and Agricultural Sciences (IFAS) Biogeochemistry of Wetlands SiScience an dAd App litilications NITROGEN Wetland Biogeochemistry Laboratory Soil and Water Science Department University of Florida Instructor : Patrick Inglett [email protected] 6/22/20086/22/2008 P.W.WBL Inglett1 1 Nitrogen Introduction N Forms, Distribution, Importance Basic processes of N Cycles Examples of current research Examples of applications Key points learned 6/22/2008 P.W. Inglett 2 1 Nitrogen Learning Objectives Identify the forms of N in wetlands Understand the importance of N in wetlands/global processes Define the major N processes/transformations Understand the importance of microbial activity in N transformations Understand the potential regulators of N processes See the application of N cycle principles to understanding natural and man-made ecosystems 6/22/2008 P.W. Inglett 3 Nitrogen Cycling Plant biomass N N2 NH3 N2 N2O (g) Litterfall Nitrogen Fixation Volatilization Mineralization. Water - Nitrification + + NO3 NH4 Organic N NH4 Column AEROBIC - Plant Peat NO3 + + [NH4 ]s uptake accretion [NH4 ]s Denitrification ANAEROBIC Microbial + Organic N Biomass N Adsorbed NH4 N2, N2O (g) 6/22/2008 P.W. Inglett 4 2 Forms of Nitrogen Organic Nitrogen Inorganic Nitrogen + • Proteins • Ammonium (NH4 ) - • Amino Sugars • Nitrate N (NO3 ) - • Nucleic Acids • Nitrite N (NO2 ) • Urea • Nitrous ox ide (N2O) • Dinitrogen (N2) 6/22/2008 P.W. Inglett 5 N Transformations Solid Gaseous Phase: Phase: Particulate N N2 + Bound: NH4 N2O - - NO3 NO2 Aqueous Phase: + NH4 DON - DIN NO3 - Particulate N NO2 6/22/2008 P.W. Inglett 6 3 Reservoirs of Nitrogen Lithosphere 163,600 x 1018 g Atmosphere 3,860 x 1018 g Hydrosphere 23 x 1018 g Biosphere 0.28 x 1018 g 6/22/2008 P.W. Inglett 7 Forms of Nitrogen Total Soil N Organic Inorganic + Protein NH4 + Amino sugars Clay-fixed NH4 Heterocyclic N 6/22/2008 P.W. Inglett 8 4 Nitrogen Transformations 1. Ammonification/Mineralization 2. Immobilization 3. Nitrification 4. Denitrification 5. Dissimilatory nitrate reduction to ammonia (DNRA) 6. Nitrogen fixation 7. Ammonia volatilization 6/22/2008 P.W. Inglett 9 Transformation of N Species Organic N 2 1 + NH4 5 8e- 7 3 NO - 3 3 3 4e- - NH2OH 4 2e - NH3 - 2e NO2 2 e- 4 2e- N2O 6 3e- 4 N2 1e- 0 +1 +2+3 +4 -3 -2 -1 +5 Oxidation Number 6/22/2008 P.W. Inglett 10 5 Nitrogen Cycle Plant/Algae + - Org-N NH4 NO3 N-FixersMicrobialNit rBiomassifi ers DitifiDen it rifiers N2 N2/N2O 6/22/2008 P.W. Inglett 11 Productivity 6/22/2008 P.W. Inglett 12 6 Greenhouse Gas Emissions 6/22/2008 P.W. Inglett 13 Nitrogen Budget Biological N2 fixation Dry and wet deposition Non-point sources Wastewaters Plant biomass Microbial biomass Soil organic N Porewater (DIN, DON) Exchangeable N Clay fixed NH4-N Volatilization Outflow Gaseous losses Plant harvest 6/22/2008 P.W. Inglett 14 7 Ammonium Ion Wet Deposition 1985-2003 1985 2003 http://nadp.sws.uiuc.edu/isopleths/ 6/22/2008 P.W. Inglett 15 Nitrate Ion Wet Deposition 1985-2003 1985 2003 6/22/2008 P.W. Inglett 16 8 Inorganic N Wet Deposition 1985 1985-2003 2003 6/22/2008 P.W. Inglett 17 Biological Nitrogen Fixation Plant biomass N N2 NH3 N2 N2O (g) Litterfall Nitrogen Fixation Volatilization Mineralization. Water - Nitrification + + NO3 NH4 Organic N NH4 Column AEROBIC - Plant Peat NO3 + + [NH4 ]s uptake accretion [NH4 ]s Denitrification ANAEROBIC Microbial + Organic N Biomass N Adsorbed NH4 N2, N2O (g) 6/22/2008 P.W. Inglett 18 9 Nitrogen Fixation 12 -1 Type of fixation N2 fixed (10 g yr ) Non-biological Industrial about 50 Combustion about 20 Lightning about 10 Total about 80 Biological Agricultural land about 90 FtdForest and non-agriltlldicultural land abt50bout 50 Sea about 35 Total about 175 6/22/2008 P.W. Inglett 19 Biological N2 Fixation + - N N + 8H + 8e + 16ATP → 2NH3 + H2 + 16ADP + 16Pi Nitrogenase 6/22/2008 P.W. Inglett 20 10 Biological N2 Fixation Prokaryotes Aerobic Anaerobic Associated w/ Plants Azotobacter Clostridium Rhizobium Beijerinckia Desulfovibrio Frankia Klebsiella Cyanobacteria Azospirillum Cy anobacteria 6/22/2008 P.W. Inglett 21 Biological N2 Fixation Heterocysts (cyanobacteria) Leghaemoglobin (rhizobium) Exopolysaccharides Temporal isolation http://www.bact.wisc.edu/Microtextbook/ images/book_4/chapter_2/2-53.jpg 6/22/2008 P.W. Inglett 22 11 Temporal Isolation y Heterocystous Nitrogenase activit Non-heterocystous 12:00 24:00 12:00 Time (h) 6/22/2008 P.W. Inglett 23 Biological N2 Fixation Regulators? Light Concentration of Oxygen Growth limitation Macro nutrients (C, P) Co-factors (Fe, Mo) Inc. Growth Inc. N Demand Species Inc. N2 shift Fixation 6/22/2008 P.W. Inglett 24 12 Nitrogen Mineralization Plant biomass N N2 NH3 N2 N2O (g) Litterfall Nitrogen Fixation Volatilization Mineralization. Water - Nitrification + + NO3 NH4 Organic N NH4 Column AEROBIC - Plant Peat NO3 + + [NH4 ]s uptake accretion [NH4 ]s Denitrification ANAEROBIC Microbial + Organic N Biomass N Adsorbed NH4 N2, N2O (g) 6/22/2008 P.W. Inglett 25 Organic Nitrogen Proteins Amino acids (30-50% of total organic N) Nucleic Acids 2-5 % of total organic N Amino Sugars 3-13% of total organic N Urea 6/22/2008 P.W. Inglett 26 13 Protein Decomposition Proteins Peptides AiAmino ac ids Arg Pro ProteasesPro Peptidases Arg Ala Ala Asp Phe Phe Asp Lys Pro Lys Pro 6/22/2008 P.W. Inglett 27 H R1 O H R2 O H R3 O N -C -C -OH N -C -C -OH N -C -C -OH H H H H H H -2H2O H R1 O R2 O R3 O N -C -C - N -C -C - N -C -C - OH H H H HHH Peptide Bonds 6/22/2008 P.W. Inglett 28 14 H R1 O H R2 O H R3 O N -C -C -OH N -C -C -OH N -C -C -OH H H H H H H + 2H2O H R1 O R2 O R3 O N -C -C - N -C -C - N -C -C - OH H H H H H H Peptide Bonds 6/22/2008 P.W. Inglett 29 Detrital Matter Enzyme Leaching Complex Polymers Hydrolysis Monomers Cellulose, Hemicellulose, Sugars, Amino Acids Proteins, Lipids, Waxes, Lignin Fatty Acids Uptake Bacterial Cell Electron Acceptors: Amino acids - 4+ O2, NO3 , Mn , 3+ 2- Fe , SO4 , CO2 Products: + NH4 CO2, H2O, Energy + 2+ NH4 , Mn , ATP 2+ 2- Fe ,S ,CH4 + NH4 6/22/2008 P.W. Inglett 30 15 Urea Decomposition NH2 Urease C = O + H2O CO2 + 2NH3 NH2 6/22/2008 P.W. Inglett 31 Urea Decomposition Urease activity (14C Tracer) [Thorén (2007)] 6/22/2008 P.W. Inglett 32 16 Ammonification [Mineralization] Organic N Ammonium N [Brea kdown of O rgani c M att er] Immobilization Inorganic N Organic N (NH4-N and NO3 -N) [Buildup of Organic Matter] 6/22/2008 P.W. Inglett 33 Ammonification/NAmmonification/N--MineralizationMineralization Organic N Ammonium R - HOOCC NH 2 NH4 + H NN--ImmobilizationImmobilization Inorganic N Organic N R NH 4 - + HOOCC NH 2 - NO3 H 6/22/2008 P.W. Inglett 34 17 Microbial Biomass C & N [Everglades[Everglades--WCAWCA--2A]2A] y = 10.7 x + 2.2 25 R2 = 0.78 20 15 ) -1 10 5 (g C kg robial biomass C c 0 Mi 00.51.0 1.5 2.0 Microbial biomass N (g N kg-1) White and Reddy, 2000 6/22/2008 P.W. Inglett 35 Decomposition Microbial Biomass C/N ratio = 10 Effic iency o f car bon ass im ilati on Aerobic = 20-60% Anaerobic = 10% Plant Detritus [100 units] 40% carbon (dry weight basis) = 40 units C Amount of C assimilated during decomposition Aerobic = 16 units [40% efficiency] Anaerobic = 4 units [10% efficiency] 6/22/2008 P.W. Inglett 36 18 Carbon/Nitrogen Ratio Nitrogen Demand? Micro bia l Biomass C/N ra tio = 10 Aerobic = 1.6 units Anaerobic = 0.4 units Critical Plant Detritus Nitrogen? Aerobic = 1.6 % Anaerobic = 0.4% Critical Carbon/Nitrogen Ratio? Aerobic = [40% C]/[1.6% N] = 25 Anaerobic = [40% C]/[0.4% N] = 100 6/22/2008 P.W. Inglett 37 Carbon/Nitrogen Ratio Mineralization [M] vs. Immobilization [I] Aerobic I > M = C/N ratio > 25 M > I = C/N ratio < 25 Anaerobic I > M = C/N ra tio > 100 M > I = C/N ratio < 100 6/22/2008 P.W. Inglett 38 19 N Mineralization/Immobilization [Aerobic] ase C/N = 15 e C/N = 35 organic N Rel C/N = 100 n I Decomposition (days) 6/22/2008 P.W. Inglett 39 N Mineralization/Immobilization [Aerobic] 40 Immobilization Ratio n 30 20 Mineralization rbon/Nitroge 10 a C C/N ratio of soil humus/ microbial biomass 0 0 150 Decomposition Period [days] 6/22/2008 P.W. Inglett 40 20 Regulators of Ammonification Substrate quality C/N ratio of the substrate Secondary compounds N forms (soluble vs. structural compounds) Microbial Activity Extracellular enzyme activity Supply of electron acceptors (Redox) Temperature pH 6/22/2008 P.W. Inglett 41 Mineralizable Nitrogen [Everglades[Everglades--WCAWCA--2A]2A] 400 y = 0.317 x + 52.4 R2 = 0.76 ) 300 -1 d -1 200 (mg N kg 100 ineralization Rate M 0 0 100 200 300 400 + -1 Extractable NH4 (mg N kg ) 6/22/2008 P.W. Inglett 42 21 Fate of Ammonium Plant biomass N N2 NH3 N2 N2O (g) Litterfall Nitrogen Fixation Volatilization Mineralization. Water - Nitrification + + NO3 NH4 Organic N NH4 Column AEROBIC - Plant Peat NO3 + + [NH4 ]s uptake accretion [NH4 ]s Denitrification ANAEROBIC Microbial + Organic N Biomass N Adsorbed NH4 N2, N2O (g) 6/22/2008 P.W. Inglett 43 Nitrogen Uptake by Rice (15N) TtlNTotal N up tktake Added 15N uptake Nitrogen uptake N-uptake fro m Soil organic N Growing season 6/22/2008 P.W.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    52 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us