Faraday Rotator Based on TSAG Crystal with <001> Orientation

Faraday Rotator Based on TSAG Crystal with <001> Orientation

Vol. 24, No. 14 | 11 Jul 2016 | OPTICS EXPRESS 15486 Faraday rotator based on TSAG crystal with <001> orientation 1* 2 2 RYO YASUHARA, ILYA SNETKOV, ALEKSEY STAROBOR, ЕVGENIY 2 2 MIRONOV, AND OLEG PALASHOV 1National Institute for Fusion Science, 322-6, Oroshi-cho, Toki, Gifu 509-5292, Japan 2Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Street, Nizhny Novgorod, 603950, Russia *[email protected] Abstract: A Faraday isolator (FI) for high-power lasers with kilowatt-level average power and 1-µm wavelength was demonstrated using a terbium scandium aluminum garnet (TSAG) with its crystal axis aligned in the <001> direction. Furthermore, no compensation scheme for thermally induced depolarization in a magnetic field was used. An isolation ratio of 35.4 dB (depolarization ratio γ of 2.9 × 10−4) was experimentally observed at a maximum laser power of 1470 W. This result for room-temperature FIs is the best reported, and provides a simple, practical solution for achieving optical isolation in high-power laser systems. ©2016 Optical Society of America OCIS codes: (160.3820) Magneto-optical materials; (140.6810) Thermal effects. References and links 1. D. J. Gauthier, P. Narum, and R. W. Boyd, “Simple, compact, high-performance permanent-magnet Faraday isolator,” Opt. Lett. 11(10), 623–625 (1986). 2. R. Wynands, F. Diedrich, D. Meschede, and H. R. Telle, “A compact tunable 60dB Faraday optical isolator for the near infrared,” Rev. Sci. Instrum. 63(12), 5586–5590 (1992). 3. S. Banerjee, K. Ertel, P. D. Mason, P. J. Phillips, M. Siebold, M. Loeser, C. Hernandez-Gomez, and J. L. Collier, “High-efficiency 10 J diode pumped cryogenic gas cooled Yb:YAG multislab amplifier,” Opt. Lett. 37(12), 2175–2177 (2012). 4. R. Yasuhara, T. Kawashima, T. Sekine, T. Kurita, T. Ikegawa, O. Matsumoto, M. Miyamoto, H. Kan, H. Yoshida, J. Kawanaka, M. Nakatsuka, N. Miyanaga, Y. Izawa, and T. Kanabe, “213 W average power of 2.4 GW pulsed thermally controlled Nd:glass zigzag slab laser with a stimulated Brillouin scattering mirror,” Opt. Lett. 33(15), 1711–1713 (2008). 5. T. Sekine, S. Matsuoka, R. Yasuhara, T. Kurita, R. Katai, T. Kawashima, H. Kan, J. Kawanaka, K. Tsubakimoto, T. Norimatsu, N. Miyanaga, Y. Izawa, M. Nakatsuka, and T. Kanabe, “84 dB amplification, 0.46 J in a 10 Hz output diode-pumped Nd:YLF ring amplifier with phase-conjugated wavefront corrector,” Opt. Express 18(13), 13927–13934 (2010). 6. E. Shcherbakov, V. Fomin, A. Abramov, A. Ferin, D. Mochalov, and V. P. Gapontsev, “Industrial Grade 100 kW Power CW Fiber Laser,” in Advanced Solid-State Lasers Congress, G. Huber and P. Moulton, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper ATh4A.2. 7. T. J. Yu, S. K. Lee, J. H. Sung, J. W. Yoon, T. M. Jeong, and J. Lee, “Generation of high-contrast, 30 fs, 1.5 PW laser pulses from chirped-pulse amplification Ti:sapphire laser,” Opt. Express 20(10), 10807–10815 (2012). 8. M. Aoyama, K. Yamakawa, Y. Akahane, J. Ma, N. Inoue, H. Ueda, and H. Kiriyama, “0.85-PW, 33-fs Ti:sapphire laser,” Opt. Lett. 28(17), 1594–1596 (2003). 9. E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov, and D. H. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17(1), 99–102 (2000). 10. I. Snetkov, I. Mukhin, O. Palashov, and E. Khazanov, “Compensation of thermally induced depolarization in Faraday isolators for high average power lasers,” Opt. Express 19(7), 6366–6376 (2011). 11. I. L. Snetkov and O. V. Palashov, “Compensation of thermal effects in Faraday isolator for high average power lasers,” Appl. Phys. B 109(2), 239–247 (2012). 12. D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40(3), 276–281 (2010). 13. R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007). 14. R. Yasuhara and H. Furuse, “Thermally induced depolarization in TGG ceramics,” Opt. Lett. 38(10), 1751–1753 (2013). #264123 http://dx.doi.org/10.1364/OE.24.015486 Journal © 2016 Received 28 Apr 2016; revised 9 Jun 2016; accepted 9 Jun 2016; published 29 Jun 2016 Vol. 24, No. 14 | 11 Jul 2016 | OPTICS EXPRESS 15487 15. R. Yasuhara, H. Nozawa, T. Yanagitani, S. Motokoshi, and J. Kawanaka, “Temperature dependence of thermo- optic effects of single-crystal and ceramic TGG,” Opt. Express 21(25), 31443–31452 (2013). 16. I. L. Snetkov, R. Yasuhara, A. V. Starobor, and O. V. Palashov, “TGG ceramics based Faraday isolator with external compensation of thermally induced depolarization,” Opt. Express 22(4), 4144–4151 (2014). 17. R. Yasuhara, I. Snetkov, A. Starobor, D. Zheleznov, O. Palashov, E. Khazanov, H. Nozawa, and T. Yanagitani, “Terbium gallium garnet ceramic Faraday rotator for high-power laser application,” Opt. Lett. 39(5), 1145–1148 (2014). 18. R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014). 19. H. Lin, S. M. Zhou, and H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto- optical applications,” Opt. Mater. 33(11), 1833–1836 (2011). 20. C. Chen, S. Zhou, H. Lin, and Q. Yi, “Fabrication and performance optimization of the magneto-optical (Tb1−xRx)3Al5O12 (R = Y, Ce) transparent ceramics,” Appl. Phys. Lett. 101(13), 131908 (2012). 21. Y. Kagamitani, D. A. Pawlak, H. Sato, A. Yoshikawa, J. Martinek, H. Machida, and T. Fukuda, “Dependence of Faraday effect on the orientation of terbium-scandium-aluminum garnet single crystal,” J. Mater. Res. 19(2), 579–583 (2004). 22. A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, and T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37(1), 1–10 (2002). 23. I. Snetkov, R. Yasuhara, A. Starobor, E. Mironov, and O. V. Palashov, “Thermo-Optical and Magneto-Optical Characteristics of Terbium Scandium Aluminum Garnet Crystals,” IEEE J. Quantum Electron. 51(7), 1–7 (2015). 24. E. A. Mironov and O. V. Palashov, “Faraday isolator based on TSAG crystal for high power lasers,” Opt. Express 22(19), 23226–23230 (2014). 25. I. Snetkov and O. Palashov, “Faraday isolator based on a TSAG single crystal with compensation of thermally induced depolarization inside magnetic field,” Opt. Mater. 42, 293–297 (2015). 26. A. Starobor, R. Yasyhara, I. Snetkov, E. Mironov, and O. Palashov, “TSAG-based cryogenic Faraday isolator,” Opt. Mater. 47, 112–117 (2015). 27. E. A. Mironov, I. L. Snetkov, A. V. Voitovich, and O. V. Palashov, “Permanent-magnet Faraday isolator with the field intensity of 25 kOe,” Quantum Electron. 43(8), 740–743 (2013). 28. I. L. Snetkov, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “Review of Faraday Isolators for Kilowatt Average Power Lasers,” IEEE J. Quantum Electron. 50(6), 434–443 (2014). 29. E. A. Mironov, A. V. Voitovich, A. V. Starobor, and O. V. Palashov, “Compensation of polarization distortions in Faraday isolators by means of magnetic field inhomogeneity,” Appl. Opt. 53(16), 3486–3491 (2014). 30. E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29(1), 59–64 (1999). 31. E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. B. Tanner, and D. H. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999). 32. E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41(3), 483–492 (2002). 1. Introduction A Faraday isolator (FI) is a key optical component of many laser systems as it is used to prevent backward reflection from the laser-irradiated materials or forward optics [1,2]. This device is important for laser-driven applications that utilize recently developed high-power lasers, such as high-energy and high-repetition lasers [3–5], ultra-high-power CW laser systems [6], and high-intensity laser systems [7,8]. However, it is difficult to use this device for high-average-power laser operation because of thermally induced effects, such as thermal birefringence effects that occur in the Faraday medium. More specifically, thermal birefringence degrades the extinction ratio of FIs, which is the most important parameter of such devices. Many studies aimed at solving this problem have been performed in the past 15 years. These reports include compensation methods for FIs [9–11], material parameter control methods that use cryogenic temperatures [12,13], as well as the development of new Faraday materials, such as Tb3Ga5O12 (TGG) ceramics [14–18] and Tb3Al5O12 (TAG) ceramics [19,20]. Today, FIs for lasers with an average power of over 1 kW can be realized as the result of the studies mentioned above. The next point of interest in the development of high- average-power FIs concerns realizing FIs with ultra-high average powers (e.g., 100 kW Vol. 24, No. 14 | 11 Jul 2016 | OPTICS EXPRESS 15488 lasers) [6]. In particular, material developments are important for increasing the operational average power of FIs. That is because high-average-power FIs require low absorption coefficients, good thermo-optic properties, and high Verdet constants.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    8 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us