Polynomial Interpolation

Polynomial Interpolation

Polynomial Interpolation MAT 2310 Computational Mathematics Wm C Bauldry November, 2011 ASU-MSD 1 Contents 1. Polynomial Interpolation 2. Lagrange Interpolation 3. Interlude: Bernstein Polynomials 4. Newton Interpolation 5. Two Comparisons 6. Interlude: Splines 7. Exercises 8. Links and Others ASU-MSD 2 Polynomial Interpolation What is Polynomial Interpolation? An interpolating polynomial p(x) for a set of points is a polynomial S that goes through each point of . That is, for each point Pi = (xi; yi) S in the set, p(xi) = yi. Applications include: Approximating Functions TrueType Fonts (2nd deg) Fast Multiplication Cryptography PostScript Fonts (3rd deg) Data Compression Since each data point determines one polynomial coefficient, an n-point data set has an n 1 degree interpolating polynomial. − [ 2, 1] − [ 1, 1] 2 4 8 2 8 − − 9 p4(x)= x x +1 = > [0, 1] > 3 − 3 S > > <> [1, 1] => [2,−1] > > > > :> ;> ASU-MSD 3 Free Sample Finding an Interpolating Polynomial Let = [ 2; 1]; [ 1; 1]; [0; 1]; [1; 1]; [2; 1] . S f − − − − g 1. Since has 5 points, we compute a 4th degree polynomial S 2 3 4 p4(x) = a0 + a1x + a2x + a3x + a4x 2. Substitute the values of into p4; write the results as a system of linear equations. S 2 3 2 3 2 3 2 3 1 a0 − 2a1 + 4a2 − 8a3 + 16a4 1 −2 4 −8 16 a0 6−17 6 a0 − a1 + a2 − a3 + a4 7 61 −1 1 −1 1 7 6a17 6 7 6 7 6 7 6 7 6 17 = 6 a0 7 = 61 0 0 0 0 7 6a27 6 7 6 7 6 7 6 7 4−15 4 a0 + a1 + a2 + a3 + a4 5 41 1 1 1 1 5 4a35 1 a0 + 2a1 + 4a2 + 8a3 + 16a4 1 2 4 8 16 a4 3. Solve with your favorite method: p (x) = 2 x4 8 x2 + 1 4 3 − 3 ASU-MSD 4 Towards a Better Way Definition Knots or Nodes: The x-values of the interpolation points. Lagrange Fundamental Polynomial: Given a set of n + 1 knots, define Y x − xk Li(x) = xi − xk k=0::n k 6= i x − x x − x x − x x − x = 0 × · · · × i−1 × i+1 × · · · × n xi − x0 xi − xi−1 xi − xi+1 xi − xn Lagrange Interpolating Polynomial: Given a set of n + 1 data points (xk; yk), define n X pn(x) = yk Lk(x) k=0 ASU-MSD 5 Sampling a Better Way Example (Lagrange Fundamental Polynomials) The set of knots [ 2; 1; 0; 1; 2] gives − − L (x) = x−(−2) x−(−1) x−0 x−1 x−2 0 −2−(−2) · −2−(−1) · −2−0 · −2−1 · −2−2 delete L (x) = x−(−2) x−(−1) x−0 x−1 x−2 1 −1−(−2) · −1−(−1) · −1−0 · −1−1 · −1−2 delete x−(−2) x−(−1) x−0 x−1 x−2 L2(x) = 0−(−2) 0−(−1) 0−0 0−1 0−2 · · delete · · x−(−2) x−(−1) x−0 x−1 x−2 L3(x) = 1−(−2) 1−(−1) 1−0 1−1 1−2 · · · delete · x−(−2) x−(−1) x−0 x−1 x−2 L4(x) = 2−(−2) 2−(−1) 2−0 2−1 2−2 · · · · delete ASU-MSD 6 Sampling a Better Way Example Let = [ 2; 1]; [ 1; 1]; [0; 1]; [1; 1]; [2; 1] . S f − − − − g We have [xk] = [ 2; 1; 0; 1; 2] and [yk] = [1; 1; 1; 1; 1]. Then 4 − − − − p4(x) = yk Lk(x). So k X=0 p (x) = (1) x+1 x−0 x−1 x−2 4 · −2+1 · −2−0 · −2−1 · −2−2 + ( 1) x+2 x−0 x−1 x−2 − · −1+2 · −1−0 · −1−1 · −1−2 + (1) x+2 x+1 x−1 x−2 · 0+2 · 0+1 · 0−1 · 0−2 + ( 1) x+2 x+1 x−0 x−2 − · 1+2 · 1+1 · 1−0 · 1−2 + (1) x+2 x+1 x−0 x−1 · 2+2 · 2+1 · 2−0 · 2−1 Then p (x) = 2 x4 8 x2 + 1. 4 3 − 3 ASU-MSD 7 An ‘Easier’ Lk Formula Compact Expressions Y x − xk For a set [xk] of n + 1 knots, we defined Li(x) = . This formula xi − xk k=0::n k 6= i is computationally intensive. n Y Set !(x) = (x − xk). k=0 1. The numerator of Li is !(x)=(x − xi) 2. The denominator of Li is !(x)=(x − xi) evaluated at xi. Rewrite as !(x) !(x) − !(xi) = . Take the limit as x ! xi: x − xi x − xi !(x) − !(xi) 0 lim = ! (xi) x!xi x − xi !(x) Thus Li(x) = 0 . A very compact formula! (x − xi) ! (xi) ASU-MSD 8 Properties of the Lk’s Proposition n X For the Lagrange interpolating polynomial pn(x) = ykLk(x), k=0 1. pn(x) is the unique polynomial of the nth degree s.t. p(xk) = yk. ( 1 j = k 2. Lk(xj ) = δkj = 0 j 6= k n X 3. Lk(x) = 1 k=0 4. If q(x) is a polynomial of degree ≤ n with yk = q(xk), then pn ≡ q 5. The set fLk(x): k = 0::(n − 1)g is a basis of Pn−1 Theorem (Lagrange Interpolation Error) n+1 If f 2 C [a; b] and fxkg 2 [a; b], then (b − a)n+1 " = jf(x) − p (x)j ≤ max jf (n+1)(x)j n n (n + 1)! ASU-MSD 9 Drawbacks More Knots To decrease the error, use more knots. But . all the Lk(x) change. 1. Set fxkg = {−2; 1; 2g. Then x − 1 x − 2 L (x) = · = 1 x2 − 1 x + 1 0 −2 − 1 −2 − 2 12 4 6 x + 2 x − 2 L (x) = · = − 1 x2 + 4 1 1 + 2 1 − 2 3 3 x + 2 x − 1 L (x) = · = 1 x2 + 1 x − 1 2 2 + 2 2 − 1 4 4 2 2. Set fxkg = {−2; −1; 1; 2g. Then x + 1 x − 1 x − 2 L (x) = · · = − 1 x3 + 1 x2 + 1 x − 1 0 −2 + 1 −2 − 1 −2 − 2 12 6 12 6 x + 2 x − 1 x − 2 L (x) = · · = 1 x3 − 1 x2 − 2 x + 2 1 −1 + 2 −1 − 1 −1 − 2 16 6 3 3 x + 2 x + 1 x − 2 L (x) = · · = − 1 x3 − 1 x2 + 2 x + 2 2 1 + 2 1 + 1 1 − 2 6 6 3 3 x + 2 x + 1 x − 1 L (x) = · · = 1 x3 + 1 x2 − 1 x − 1 3 2 + 2 2 + 1 2 − 1 12 6 12 6 ASU-MSD 10 Bernstein Polynomials Definition (Bernstein Polynomials of f) n k n−k Bernstein Basis Polynomials: bn;k(x) = x (1 x) for k = 0::n k − Bernstein Polynomial of f: Let f :[0; 1] R. Then n ! k n k n−k Bn(f) = f x (1 x) n k − k X=0 Note: If g :[a; b] R, then use f(x) = g a + (b a)x ! − Example 3 n k3 k k n−k Let f(x) = x for x [0; 1]. Then Bn(f) = 3 x (1 x) 2 k=0 n n − P1 3 2 B1(x) = x B2(x) = 4 x + 4 x 1 2 2 1 3 1 9 2 3 3 B3(x) = 9 x + 3 x + 9 x B4(x) = 16 x + 16 x + 8 x ASU-MSD 11 Bernstein Basis Functions Bernstein Basis Functions, n = 3 3 2 k=0: b ; (x) = (1 x) k=1: b ; (x) = 3x(1 x) 3 0 − 3 1 − 2 3 k=2: b ; (x) = 3x (1 x) k=3: b ; (x) = x 3 2 − 3 3 ASU-MSD 12 Bernstein and Lagrange Example (f(x) = Heaviside(x 1 )) − 2 p1 B1(f) p4 B4(f) ASU-MSD 13 Newton Interpolation Newton Basis Polynomials In order to make it easy to add a new knot, we change the set of basis polynomials. Given a set of n + 1 knots, xk , set f g N0(x) = 1 N (x) = (x x ) 1 − 0 N (x) = (x x )(x x ) 2 − 0 − 1 N3(x) = (x x0)(x x1)(x x2) . − − − . Nn(x) = (x x )(x x )(x x ) (x xn− ) − 0 − 1 − 2 ··· − 1 Now let n Pn(x) = akNk(x) k X=0 ASU-MSD 14 The Newton Coefficients Calculating the ak’s For a set of n + 1 data points [xk; yk] , define the (forward) divided differences recursively as f g [y0] = y0 [y ] [y ] [y ; y ] = 1 − 0 0 1 x x 1 − 0 [y ; y ] [y ; y ] [y ; y ; y ] = 1 2 − 0 1 0 1 2 x x . 2 − 0 . Then the Newton interpolating polynomial is Pn(x) = [y ] + [y ; y ](x x ) + [y ; y ; y ](x x )(x x ) 0 0 1 − 0 0 1 2 − 0 − 1 + [y0; y1; y2; y3](x x0)(x x1)(x x2) + ::: n − − − = [y0; : : : ; yk]Nk(x) k X=0 ASU-MSD 15 First Sample A Used Polynomial Let S = f[−2; 1]; [−1; −1]; [0; 1]; [1; −1]; [2; 1]g. Begin by building a difference tableau. x −2 −1 0 1 2 y 1 −1 1 −1 1 [y0] 1 −1 1 −1 1 [y0; y1] −22 −2 2 [y0; y1; y2] 2 −2 2 4 4 [y0; y1; y2; y3] − 3 3 2 [y0; y1; y2; y3; y4] 3 n P Then P4(x) = [y0; : : : ; yk]Nk(x) k=0 4 2 = 1−2(x+2)+2(x+2)(x+1)− 3 (x+2)(x+1)(x)+ 3 (x+2)(x+1)(x)(x−1) 8 2 2 4 P4(x) = 1 − 3 x + 3 x ASU-MSD 16 Second Sample The Heaviside Function 1 2 3 4 Set S = [0; 0]; [ 5 ; 0]; [ 5 ; 0]; [ 5 ; 1]; [ 5 ; 1]; [1; 1] .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    22 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us