Interstellar Medium (ISM)

Interstellar Medium (ISM)

1 Interstellar Medium (ISM) Week 2 March 26 (Thursday), 2020 updated 04/13, 08:56 선광일 (Kwangil Seon) KASI / UST 2 Atomic Structure, Spectroscopy 3 References • Books for atomic/molecular structure and spectroscopy - Astronomical Spectroscopy [Jonathan Tennyson] - Physics of the Interstellar and Intergalactic Medium [Bruce T. Draine] ⇒ see https://www.astro.princeton.edu/~draine/ for errata - Astrophysics of the Diffuse Universe [Michael A. Dopita & Ralph S. Sutherland] ⇒ many typos - Physics and Chemistry of the Interstellar Medium [Sun Kwok] - Atomic Spectrocopy and Radiative Processes [Egidio Landi Degl’Innocenti] 4 Hydrogen Atom: Schrödinger Equation • Momentum operator ℏ p = ∇ i • Hamiltonian operator p2 ℏ2 H = + V(r) = − ∇2 + V(r) 2m 2m • The time-dependent Schrödinger equation for a system with Hamiltonian H: ∂Ψ ∂Ψ (r, t) ℏ2 iℏ = HΨ iℏ = − ∇2Ψ (r, t) + V(r)Ψ (r, t) ∂t ∂t 2m The time and space parts of the wave function can be separated: Ψ (r, t) = ψ(r)eiEt/ℏ • Then, the time-independent Schrödinger equation is obtained: ℏ2 Hψ (r) = Eψ(r) ∇2ψ (r) + V(r)ψ (r) = Eψ(r) 2m 5 • Expectation value of an operator 3 F = ⇤F d x h<latexit sha1_base64="+p0ZDsGnVguDSgAa3yy1sewZ094=">AAACDnicbZDNSgMxFIUz/tb6N+rSTVAK4qLMWEEXKgWhuKxiq9CpJZPJtKGZzJDcEUvpE4jgq7hxoYhb127EhxB8BNPWhVoPBD7OvZebe/xEcA2O826NjU9MTk1nZrKzc/MLi/bSclXHqaKsQmMRq3OfaCa4ZBXgINh5ohiJfMHO/PZhv352yZTmsTyFTsLqEWlKHnJKwFgNO+cJFsJeyVO82YKDfY9L8BLNLzZxCfcBBxeFq4a97uSdgfAouN+wXnRPboK3z49yw371gpimEZNABdG65joJ1LtEAaeC9bJeqllCaJs0Wc2gJBHT9e7gnB7OGSfAYazMk4AH7s+JLom07kS+6YwItPTfWt/8r1ZLIdytd7lMUmCSDheFqcAQ4342OOCKURAdA4Qqbv6KaYsoQsEkmDUhuH9PHoXqVt4t5LeOTRrbaKgMWkVraAO5aAcV0REqowqi6BrdoQf0aN1a99aT9TxsHbO+Z1bQL1kvX4Ygn4c=</latexit> i Z • Wavefunction for a hydrogen-like atom: (r, ✓, φ)=R (r)Y (✓, φ) <latexit sha1_base64="omnm2UJR+hQQ9tJp3PqxmXxqUjc=">AAACH3icbZDNSwJBGMZn7cvsyz5uXZYkUBDZtagugdClo0Wa4coyO87q4OzsMvNuIIv/SZf+lS4diohu/jfNqgfTHhh4+D3vMPM+XsSZAssaG5mV1bX1jexmbmt7Z3cvv3/QVGEsCW2QkIey5WFFORO0AQw4bUWS4sDj9NEb3KT54zOVioXiAYYR7QS4J5jPCAaN3PyFEynmJoIHo6IsO9CngMtO1Gel6/sUa1p6cpM0ng/dfMGqWBOZy8aemULtyJ+o7uZ/nG5I4oAKIBwr1batCDoJlsAIp6OcEysaYTLAPdrWVuCAqk4y2W9knmrSNf1Q6iPAnND5GwkOlBoGnp4MMPTVYpbC/7J2DP5VJ2EiioEKMn3Ij7kJoZmWZXaZpAT4UBtMJNN/NUkfS0xAV5rTJdiLKy+bZrVin1Wqd7qNczRVFh2jE1RENrpENXSL6qiBCHpBb+gDfRqvxrvxZXxPRzPG7M4h+iNj/At5+KV5</latexit> nlm nl lm radial function: 2 1/2 2Z ~ ˚ 3 ⇢ = r, a0 2 =0.529A (Bohr radius), 2Z (n l 1)! ⇢/2 l 2l+1 na0 ⌘ mec R (r)= − − e− ⇢ L (⇢) nl na 2n (n + l)! 3 n+l L2l+1 = associated Laguerre polynomial − " 0 # <latexit sha1_base64="jWIE314tiehRkmRr6Us2tgPL1A4=">AAACgXicbVFNb9QwEHVSPsrytYUjF4uFqlVLlIQiQGilFi4ceigS21ZstpHjTDZWHTu1nYqV5f4Ofhc3/gzC+3GAlpGseXpvZmy/KVrOtInjX0G4duv2nbvr93r3Hzx89Li/8eRYy05RGFHJpTotiAbOBIwMMxxOWwWkKTicFOef5vrJJSjNpPhqZi1MGjIVrGKUGE/l/R+bmarlMKsUoTb95qwgeezU7tWVzxlcdOxyqWV1QdRZ6myTA/V5GEdv0veZge/GZgcHbonw1kdZK6xIyTq97XazrLd5mFuxw92ZTflO4oZ4VUm0lpQRAyU+JNMOlALcSj4TsmGEu7w/iKN4EfgmSFZggFZxlPd/ZqWkXQPCUO6Hj5O4NRNLlGGUg+tlnYaW0HMyhbGHgjSgJ3bhoMMvPVPiSip/hMEL9u8OSxqtZ03hKxtian1dm5P/08adqd5NLBNtZ0DQ5UVVx7GReL4OXDIF1PCZB4Qq5t+KaU284cYvredNSK5/+SY4TqPkdZR+2Rvs763sWEfP0HO0hRL0Fu2jz+gIjRBFv4MXwasgCtfC7TAO02VpGKx6nqJ/IvzwB/w/woQ=</latexit> n+l <latexit sha1_base64="yQNHlwr1tGt063ig4U+2GTQw7K4=">AAACanicbVHLbtQwFHXCqx0oHYoEqrpxKUiJRjMkGSRggVTBhgWLgpi2YvKQ43FmrDpOZDtII8uLfhBf0VW37PiCbir1F+rMzAJarmTf43Pu1bWP85pRqYLgj+PeuXvv/oO19c7DRxuPN7tPtg5l1QhMRrhilTjOkSSMcjJSVDFyXAuCypyRo/zkU6sf/SRC0op/V/OaJCWaclpQjJSlsu7pt0xzZjzhf+jHjBRqvNi9uBAI6+iH0RxlgYkFnc6Unw6XvMf7rB/6u0ZHPLanHvN3Y5MOV3VJqsPXkSGp7sdiVlnYppTBL3ZYj5lUR6wXGq9l/ay7FwyCRcDbIFyBvf33278+np1fHWTd3/Gkwk1JuMIMSTkOg1olGglFMSOmEzeS1AifoCkZW8hRSWSiF1YZ+MoyE1hUwi6u4IL9u0OjUsp5mdvKEqmZvKm15P+0caOKd4mmvG4U4Xg5qGgYVBVsfYcTKghWbG4BwoLau0I8Q9ZMZX+nY00Ibz75NjiMBuFwEH21brwBy1gDO+AF8EAI3oJ98BkcgBHA4MLZcJ45z51Ld8vddneWpa6z6nkK/gn35TVcKbwy</latexit> ✓ ◆ { } spherical harmonics 1/2 (m+ m )/2 (l m )! 2l +1 m imφ m Y (✓, φ)=( 1) | | P | |(cos ✓)e P | | = associated Legendre function − | | <latexit sha1_base64="33PsWIXiS2a42APBIst22wNE278=">AAACGXicbVDLSgMxFM34rPVVdekmWARXZUYLuhEENy5cVLCt0NYhk7lTg5nMkNwRy9jfcOOvuHGhiEtd+Tem7Sx8HQgczrknyT1BKoVB1/10pqZnZufmSwvlxaXlldXK2nrLJJnm0OSJTPRFwAxIoaCJAiVcpBpYHEhoB9fHI799A9qIRJ3jIIVezPpKRIIztJJfcRu+vMzv4rshPaRdhFvMKTMm4YIhhPQU+qBCDTTKFB8lhn6l6tbcMehf4hWkSgo0/Mp7N0x4FoNCLu3VHc9NsZczjYJLGJa7mYGU8WvWh46lisVgevl4syHdtkpIo0Tbo5CO1e+JnMXGDOLATsYMr8xvbyT+53UyjA56uVBphqD45KEokxQTOqqJhkIDRzmwhHEt7F8pv2KacbRllm0J3u+V/5LWbs3bq+2e1atH9aKOEtkkW2SHeGSfHJET0iBNwsk9eSTP5MV5cJ6cV+dtMjrlFJkN8gPOxxcjNqD5</latexit> lm − (l + m )! 4⇡ l l <latexit sha1_base64="BpgRYJu18ReYZaeTwWNo0m2uWNg=">AAACanicbVFNb9NAFFy7fJRAIS0SCPViCEiOQoMdIsEFqRIXjkEibVHsWOvNc7zqrm3tPiNFWx/4i9z4BVz4EazjHKDlSSuNZuZpdmfTSnCNQfDTcfdu3b5zd/9e7/6Dg4eP+odHZ7qsFYM5K0WpLlKqQfAC5shRwEWlgMpUwHl6+bHVz7+B0rwsvuCmgljSdcEzzihaKul//5oYIRs/whyQvo6qnA8/+CfhcGl8ObqSV8M3kyYSkOEiyhRlxhcnLfu8sWjUoU6YiFHYmGlU8SZSfJ1jvDShXfZmiVga67QhrNRd0BCWhss2rUn6g2AcbMe7CcIdGJDdzJL+j2hVslpCgUxQrRdhUGFsqELOBDS9qNZQUXZJ17CwsKASdGy2VTXeK8usvKxU9hTobdm/NwyVWm9kap2SYq6vay35P21RY/Y+NryoaoSCdUFZLTwsvbZ3b8UVMBQbCyhT3N7VYzm1xaH9nZ4tIbz+5JvgbDIO344nn6eD0+mujn1yTF4Qn4TkHTkln8iMzAkjv5wD54nz1PntHrnP3OPO6jq7ncfkn3Ff/gG5qbly</latexit> | | • Quantum Number - n = 1, 2, 3, ⋯ : principal quantum number - l = 0, 1, 2, ⋯, n − 1 : orbital quantum number - m = − l, − l + 1, ⋯, 0, ⋯, l − 1, l : magnetic quantum number 6 28 The hydrogen atom 2.1 The Schr¨odinger equation 25 • Wavefunctions for a hydrogen-like atom Table 2.2 Radial hydrogenic wavefunctions Rn,l in terms of the variable ρ = Zr/(na0), which gives a scaling that varies with n. The Bohr radius a0 is defined in eqn 1.40. Table 2.1 Orbital angular momentum eigenfunctions. 3/2 Z ρ 1 R1,0 = 2e− Y0,0 = a0 4π ! " ! 3/2 Z ρ 3 R2,0 = 2(1 ρ)e− Y1,0 = cos θ 2a0 − 4π ! " ! 3/2 Z 2 ρ 3 iφ R2,1 = ρ e− Y1, 1 = sin θ e± 2a √ ± ∓ 8π ! 0 " 3 ! 3/2 Z 2 2 ρ 5 2 R3,0 = 2 1 2ρ + ρ e− Y2,0 = 3cos θ 1 3a0 − 3 16π − ! " ! " ! 3/2 " # Z 4√2 1 ρ 15 iφ R = ρ 1 ρ e− Y2, 1 = sin θ cos θ e± 3,1 ± 3a0 3 − 2 ∓ 8π ! " ! " ! 3/2 Z 2√2 2 ρ 15 2 2iφ − Y2, 2 = sin θ e± R3,2 = ρ e ± 3a0 3√5 32π ! " 2!π π ∞ 2 2 2 Normalisation: R r dr =1 Normalisation: Yl,m sin θ dθ dφ =1 n,l | | #0 $0 $0 Z Here, ρ ≡ r These show a general a feature of hydrogenicna0 wavefunctions, namely 12 12 that the radial functions for l =0haveafinitevalueattheorigin,i.e.repeated application of the lowering operator: This eigenfunction has magnetic quantum number l (l m)=m. the power series in ρ starts at the zeroth power. Thus electrons with − − l m l ilφ l =0(calleds-electrons)haveafiniteprobabilityofbeingfoundatthe Yl,m (l ) − sin θ e . (2.11) ∝ − position of the nucleus and this has important consequences in atomic Atomic Physics [Foot] physics. To understand the properties of atoms, it is important to know what Inserting E from eqn 2.20 into eqn 2.17 gives the scaled coordinate | | the wavefunctions look like. The angular distribution needs to be mul- Z r tiplied by the radial distribution, calculated in the next section, to give ρ = , (2.21) n a0 the square of the wavefunction as where the atomic number has been incorporated by the replacement 2 2 2 2 2 e /4π#0 Ze /4π#0 (as in Chapter 1). There are some important prop- ψ (r, θ, φ) = Rn,l (r) Yl,m (θ, φ) . (2.12) erties of→ the radial wavefunctions that require a general form of the| | | | solution and for future reference we state these results. The probability 2 This is the probability distribution of the electron, or e ψ can be in- density of electrons with l =0attheoriginis terpreted as the electronic charge distribution. Many atomic− | | properties, 3 2 1 Z however, depend mainly on the form of the angular distribution and ψn,l=0 (0) = . (2.22) 2 2 | | π na0 Fig. 2.1 shows some plots of Yl,m .ThefunctionY0,0 is spherically ! " | 2 | | | symmetric. The function Y has two lobes along the z-axis. The For electrons with l =0theexpectationvalueof1/r3 is | 1,0| " squared modulus of the other two eigenfunctions of l =1isproportional to sin23 θ.AsshowninFig.2.1(c),thereisacorrespondencebetween 1 ∞ 1 2 2 1 Z 3 = 3 Rn,l (r) r dr = 1 these distributions. (2.23) and the circular motion of the electron around the r 0 r l l + (l +1) na0 $ % # 2 !z-axis" that we found as the normal modes in the classical theory of the These results have been written in a& form' that is easyZeeman to remember; effect (in Chapter 1).13 This can be seen in Cartesian coordi- 13Stationary states in quantum 3 they must both depend on 1/a0 in order to have the correctnates where dimensions mechanics correspond to the time- and the dependence on Z follows from the scaling of the Schr¨odinger z averaged classical motion. In this Y1,0 , case both directions of circular mo- ∝ r tion about the x-axis give the same x +iy distribution. Y , (2.13) 1,1 ∝ r x iy Y1, 1 − . − ∝ r 7 • The spherical harmonics are eigenfunctions of the orbital angular momentum operator ℏ L2Y = l(l + 1) 2Y ,LY = m Y L = r × p = r × ∇ <latexit sha1_base64="q1zx6CT0ZG3kcmporaNQQccBWUY=">AAACMXicbVBLSwMxGMzWV62v+rh5CRahopTdKuhFKHjpoYcK9iFtXbJptg1NdpckK9Sl/Ule/CfipQdFvPonTLfFR+tAYDLzfSQzTsCoVKY5MhILi0vLK8nV1Nr6xuZWenunKv1QYFLBPvNF3UGSMOqRiqKKkXogCOIOIzWndzX2a/dESOp7N6ofkBZHHY+6FCOlJTtdbHKkuo4blQZ3eXhrR4wP4CVkWXZsHTW7DhLf8slwOCzZDz9DPPandzudMXNmDDhPrCnJFPbcGGU7/dxs+zjkxFOYISkblhmoVoSEopiRQaoZShIg3EMd0tDUQ5zIVhQnHsBDrbSh6wt9PAVj9fdGhLiUfe7oyXE+OeuNxf+8Rqjci1ZEvSBUxMOTh9yQQeXDcX2wTQXBivU1QVhQ/VeIu0ggrHTJKV2CNRt5nlTzOes0l7/WbZyBCZJgHxyALLDAOSiAIiiDCsDgEbyAV/BmPBkj4934mIwmjOnOLvgD4/MLxv+rpA==</latexit> lm ~ lm z lm ~ lm i • The sizes of the angular moment and z-component are L = l(l + 1) , L = m <latexit

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    56 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us