ICIC Data Analysis Lecture 1 2014

ICIC Data Analysis Lecture 1 2014

Course'Team Alan%Heavens% ICIC Data Analysis Workshop Andrew%Jaffe% Principled statistical methods for researchers Jonathan%Pritchard% ! 8-11 September 2014 Daniel%Mortlock% Roberto%Tro;a%% Justin Alsing Hik Shariff Sponsored by STFC ! Rachel Groom and Winton Capital Sandie Bernor South Kensington Campus South Kensington Campus Hyde Park Logis>cs%and%events Kensington Gore Royal Albert • Fire%exits% Hall We • Prince’s Gate I/O:%Tea/coffee/lunch%(Blacke;%311),%toilets% 2 Gardens are e’s Gate Princ here Queen’s Gate • Breakfast%8.15P8.45%a.m.% 1 Beit Quad Prince Consort Road Ethos 3 Sports 45 8 Centre Blackett 7 Royal School 12 • 9 10 of Mines Events:% Prince’s Gardens (North Side) 6 e Bon 11 oderic Hill R Bessemer Business School 17 35 13 14 ACEX • Talk%by%Tom%Babbedge%(Winton)%today%~5%p.m.% al 36 Huxley 16 18 Prince’s 19 15 Gardens Electric Eastside Engineering 22 • Barbecue%tonight%6%p.m.%58%Princes%Gate% 20 Sherfeld 21 Faculty 23 28 25 Prince’s Gardens (Watts Way) Queen’s 26 27 City and Lawn Guilds • Southside Drinks%recep>on%5:30%p.m.%tomorrow% Library Skempton Building 29 24 Exhibition Road 58 Princes Gate Imperial College Road • Public%engagement%lunch,%Wednesday% 30 32 Chemistry 33 Chemistry 50 metres RCS1 31 Sir Alexander 34 Fleming South 4 Frankland Road Kensington Cromwell Road e Thurloe Plac Buildings where wheelchair access is not possible at this time Thurloe Street 1 Beit Quadrangle 12 Goldsmiths Building 21 Grantham Institute 30 Sir Ernst Chain Building – 2 Imperial College Union 13 Huxley Building for Climate Change Wolfson Laboratories 3 Ethos Sports Centre 14 ACE Extension 22 Faculty Building 31 Flowers Building 4 Prince’s Gdns, North Side 15 William Penney 23 58 Prince’s Gate 32 Chemistry Building Garden Hall Laboratory 24 170 Queen’s Gate 33 Sir Alexander Fleming 5 Weeks Hall 16 Electrical Engineering 25 Central Library Building 6 Blackett Laboratory 17 Business School 26 Queen’s Tower 34 Chemistry RCS1 7 Roderic Hill Building 18 53 Prince’s Gate 27 Skempton Building 35 52 Prince’s Gate 8 Bone Building 19 Eastside 28 City and Guilds 36 Alumni Visitor Centre 9 Royal School of Mines 20 Sherfeld Building Building 10 Aston Webb Student Hub 29 Southside 11 Bessemer Building Conference Ofce Outline%of%course ICIC%Data%Analysis%Workshop: the%Bayesics • Basic%principles% • Sampling%% • Numerical%methods%(Parameter%inference)% • MCMC% Alan%Heavens%% • Hybrid/Hamiltonian%Monte%Carlo% Imperial%College%London% • Bayesian%Hierarchical%Models% ICIC%Data%Analysis%Workshop% • Bayesian%Evidence%(Model%selec>on) 8%September%2014 5 Outline LCDM%fits%the%WMAP%% data%well. • Inverse%problems:%from%data%to%theory% ∆T ∆T • Probability%review,%and%Bayes’%theorem% Correla>on%Func>on (φ) (φ + ✓) h T T i Power%Spectrum%Cl • Parameter%inference% • Priors% • Marginalisa>on% • Posteriors Inverse%problems Examples • Most%cosmological%problems%are%inverse' • Hypothesis%tes>ng% problems,'where%you%have%a%set%of%data,%and%you% – Is%the%CMB%radia>on%consistent%with%(ini>ally)%gaussian% want%to%infer%something.%%% fluctua>ons?% • Parameter%inference% • P%generally%harder%than%predic>ng%the%outcomes% – In%the%Big%Bang%model,%what%is%the%value%of%the%ma;er% when%you%know%the%model%and%its%parameters% density%parameter?% • Examples% • Model%selec>on% – Do%cosmological%data%favour%the%Big%Bang%theory%or%the% – Hypothesis%tes>ng% Steady%State%theory?% – Parameter%inference% – Is%the%gravity%law%General%Rela>vity%or%a%different% theory? – Model%selec>on What%is%probability?% Bayes’%Theorem • Frequen>st%view:%p%describes%the%rela>ve%frequency'of' • Rules%of%probability:% outcomes'in%infinitely%long%trials% ! • p(x)%+%p(not%x)%=%1%% % sum%rule% • Bayesian%view:%p%expresses%our%degree'of'belief% • p(x,y)%=%p(x|y)%p(y)%% % product%rule% ! • p(x)%=%Σk%p(x,yk)%% % % marginalisa>on% • Bayesian%view%is%what%we%seem%to%want%from% experiments:%e.g.%given'the'Planck'data,'what'is'the' • Sum⟶%integral%%%%%%%%%%%%%%%%con>nuum%limit%(p=pdf)% probability'that'the'density'parameter'of'the'Universe' p(x)= dy p(x, y) is'between'0.9'and'1.1? ! • p(x,y)=p(y,x)%gives%Z Bayes’'theorem p(x y)p(y) p(y x)= | | p(x) p(x|y)%is%not%the%same%as%p(y|x) The%Monty%Hall%problem:%% An%exercise%in%using%Bayes’%theorem • x%=%female,%y=pregnant% You choose % ? • p(y|x)%=%0.03% % this one • p(x|y)%=%1 Do%you%change%your%choice?% ! This%is%the%Monty%Hall%problem Bayes’%Theorem%and%Inference Posteriors,%likelihoods,%priors%and%evidence • If%we%accept%p%as%a%degree%of%belief,%then%what% p(x ✓)p(✓) p(✓ x)= | we%ohen%want%to%determine%is*% | p(x) ! Evidence% Prior %%%%%%%%%:%model%parameter(s),%x:%the%data% Posterior Likelihood%L or%Model%Likelihood p(x ✓)p(✓) p(✓ x)= | Remember%that%we%interpret%these%in%the%context%of%a%model%M,%so%all%probabili>es%are% To%compute%it,%use%Bayes’%theorem% | p(x) condi>onal%on%M%(and%on%any%prior%info%I).%%E.g.% Note%that%these%probabili>es%are%all%condi>onal% The%evidence%looks%rather%odd%–%what%is%the%probability'of'the'data?%%For%parameter% on%a)%prior%informa>on%I,%b)%a%model%M% es>ma>on,%we%can%ignore%it%–%it%simply%normalises%the%posterior.%%If%you%need%it, p(x)= p(x ✓ )p(✓ ) or p(x)= d✓ p(x ✓)p(✓) p(✓ x)=p(✓ x, I, M) or p(✓ xIM) | k k | | | | Xk Z *This%is%RULE%1:%%start%by%wri>ng%down%what%it%is%you%want%to%know% No>ng%that%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%makes%its%role%clearer.%%% %%%RULE%2:%There%is%no%RULE%n,%n>1 In%model'selecFon'(from%M'and%M’),%% Forward%modelling Case%study:%the%mean • Given%a%set%of%N%independent%samples%{xi}%from%the% same%distribu>on,%with%gaussian%dispersion%σ,%what%is% the%mean%of%the%distribu>on%%%%%%%%%%%%%%%%%?%µ = x With%noise% h i proper>es%we%can% • Bayes:%compute%the%posterior'probability% p(µ x ) predict%the% |{ i} Sampling' • DistribuFon'(the% Frequen>st:%devise%an%esFmator%%%%%%for%µˆ μ.%Ideally%it% probability%of% should%be%unbiased,%%so%%%%%%%%%%%%%%%%%%and%have%as%small%an%µˆ = µ obtaining%a%general% h i set%of%data).%% error%as%possible%(minimum'variance).% The%Likelihood% refers%to%the% • These%lead%to%superficially%iden>cal%results%(although% specific%data%we% they%aren’t),%but%the%interpreta>on%is%very%different% have)%P%it%isn’t%a% probability,%strictly. Note:%this%is%just%the%expecta>on%value%of%x;%% • %%%%%%%%Bayesian:%no%es>mators%P%just%posteriors the%distribu>on%is%needed 18 Set%up%the%problem State%your%priors • What%is%the%model%for%the%data,%M?%%% • In%easy%cases,%the%effect%of%the%prior%is%simple% • As%experiment%gathers%more%data,%the%likelihood%tends%to%get% • M:'x'='μ'+'n%% narrower,%and%the%influence%of%the%prior%diminishes% • • Data:%a%set%of%values%{xi},%i=1…N% Rule%of%thumb:%if%changing%your%prior†%to%another%reasonable% one%changes%the%answers%a%lot,%you%could%do%with%more%data% 2 2 • Prior%info'I:%noise%<n>=0%<n >=σ %(known);% • Reasonable%priors?%Noninforma>ve*%–%constant%prior% gaussian%distributed% • scale%parameters%in%%%%%%%%%%%%%%%;%uniform%in%log%of%parameter% (Jeffreys’%prior*)% • θ:%the%mean,%μ% • Beware:%in%more%complicated,%mul>dimensional%cases,%your% • Rule%1:%what%do%we%want?%% prior%may%have%subtle%effects…% ! • p(μ%|%{xi}%)% †%I%mean%the%raw%theore>cal%one,%not%modified%by%an%experiment% *%Actually,%it’s%be;er%not%to%use%these%terms%–%other%people%use%them%to%mean%different% • See%Jonathan’s%lectures%for%the%solu>on things%–%just%say%what%your%prior%is! 19 From%Sivia%&%Skilling’s%Data'Analysis'book.%%%IS%THE%COIN%FAIR?% The%effect%of%priors Priors%=%“It’s%likely%to%be%nearly%fair”,%“It’s%likely%to%be%very%unfair” Model:%independent%throws%of%coin.%%Parameter%θ%=%probability%of%H p(θ|H) p(θ|HH) Uniform%Prior p(θ|HHT) p(θ|HHTT) 21 Sivia%&%Skilling 22 • VSA%CMB%% VSA%posterior experiment% (Slosar%et%al%2003) Priors:%%ΩΛ≥0%% 10%≤%age%≤%20%Gyr h%≈%0.7%±%0.1 There%are%no%data%in% these%plots%–%it%is%all% coming%from%the%prior! p(✓1)= d✓j=1 p(x ✓) p(✓) 6 | Z Inferring%the%parameter(s) Errors • What%to%report,%when%you%have%the%posterior?% • If%we%assume%uniform%priors,%then%the%posterior%is%propor>onal%to%the%likelihood.%%% • Commonly%the%mode%is%used%(the%peak%of%the% ! posterior)% If%further,%we%assume%that%the%likelihood%is%singlePmoded%(one%peak%at%%%%%%%)%,%we%can%✓0 make%a%Taylor%expansion%of%lnL:% • ! Mode%=%Maximum'Likelihood'EsFmator,'if'the'priors' 1 ⌅2 ln L ! ln L(x; θ)=lnL(x; θ0)+ (θα θ0α) (θ⇥ θ0⇥)+... are'uniform' ! 2 − ⌅⇤↵⌅⇤β − 1 ! L(x; θ)=L0 exp (θ↵ θ0↵)H↵(θβ θ0β)+... • The%posterior'mean'may%also%be%quoted,%but% ! − 2 − − beware% where%the%Hessian%matrix%is%defined%by%these%equa>ons.%%Comparing%this%with%a%⇥ ⇤ gaussian,%the%condiFonal'error'(keeping%all%other%parameters%fixed)%is% ! 1 • Ranges%containing%x%%of%the%posterior%probability%of% σα = ! pH↵↵ the%parameter%are%called%credibility'intervals%(or% Marginalising%over%all%other%parameters%gives%the%marginal'error 1 Bayesian'confidence'intervals) σ↵ = (H− )↵↵ p 26 Mul>modal%posteriors%etc NonPgaussian%likelihoods:%number% • Peak%may%not%be%gaussian% counts • Mul>modal?%Characterising%it% • A%radio%source%is%observed%with%a%telescope%which%can% by%a%mode%and%an%error%is% detect%sources%with%fluxes%above%S0.%The%radio%source% probably%inadequate.%%May% has%a%flux%S1%=%2S0%(assume%it%is%precisely%measured).% What%is%the%slope%of%the%number%counts?%% have%to%present%the%full% From%BPZ Pα posterior.% (Assume%N(S)dS%∝%S %dS)% • Mean%posterior%may%not%be% ! Bruzual & Charlot Can%you%tell%anything? useful%in%this%case%–%it%could% be%very%unlikely,%if%it%is%a%valley% between%2%peaks.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    8 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us