Casp9 Abstract Book

Casp9 Abstract Book

CASP9 ABSTRACT BOOK Critical Assessment of Techniques for Protein Structure Prediction Ninth Meeting PACIFIC GROVE, CALIFORNIA, USA DECEMBER 5-9, 2010 TABLE OF CONTENT 3D-JIGSAW-4.0 .................................................................................................................... 15 3D-JIGSAW-4.5 .................................................................................................................... 15 3D-JIGSAW-4.0 & 3D-JIGSAW-4.5 ....................................................................................................................... 15 3DLIGANDSITE1-4 ................................................................................................................ 17 Using 3DLigandSite to making binding site predictions in CASP9 ....................................................................... 17 3SP-TSAILAB ........................................................................................................................ 19 A side-chain centric method for template-based structure prediction ............................................................... 19 4_BODY_POTENTIALS .......................................................................................................... 21 CASP9: Four Body Potentials for the Prediction of Protein Structure .................................................................. 21 ALADEGAP .......................................................................................................................... 23 Improvement of the Quality of Model Structures by Improving the Template-Target Alignments .................... 23 AOBA .................................................................................................................................. 25 Quality Assessment by Structural Consensus and Statistical Scoring Functions and Modeling by Hybridization of Server Models ................................................................................................................................................. 25 ATOME2_CBS ...................................................................................................................... 27 BAKER ................................................................................................................................. 29 Modeling of Protein Structures Using Rosetta in CASP9 ..................................................................................... 29 BALTYMUS .......................................................................................................................... 31 Quality assesment of single protein structure models using geometrical and statistical techniques ................. 31 BHAGEERATH ...................................................................................................................... 32 Bhageerath: an energy based web-enabled computer software suite for predicting the tertiary structures of soluble proteins ................................................................................................................................................... 32 BHAGEERATH_SCFBIO ......................................................................................................... 34 Bhageerath-H: An ab-initio, homology combined hybrid model for protein tertiary structure prediction ......... 34 BILAB-ENABLE ..................................................................................................................... 36 BILAB-SOLO ......................................................................................................................... 36 BILAB .................................................................................................................................. 36 2 Tertiary Structure Prediction by Combination of Fold Recognition, Realignment, Fragment Assembly and Consensus-based Model Quality Prediction ........................................................................................................ 36 BIO_ICM .............................................................................................................................. 38 Protein structure modeling using 3D-Jury and pyROSETTA ................................................................................ 38 BIOMINE ............................................................................................................................. 40 Prediction of Disorder Regions by Multilayer Information Fusion ...................................................................... 40 BIOSERF .............................................................................................................................. 42 Server-based de novo and fold recognition predictions using BioSerf ................................................................ 42 BUJNICKI-KOLINSKI .............................................................................................................. 43 Protein structure prediction by CABS and TRACER with restraints derived from MQAP-scored models. ........... 43 CBRC_POODLE ..................................................................................................................... 45 POODLE-I: Prediction of disordered region by integrating .................................................................................. 45 POODLE series based on workflow approach ..................................................................................................... 45 CHICKEN_GEORGE ............................................................................................................... 47 Protein structure prediction with SimFold in CASP9............................................................................................ 47 CHUO-FAMS ........................................................................................................................ 49 Construction of the Function for Protein Structure Prediction and the Homology Modeling System ................. 49 CHUNK-TASSER ................................................................................................................... 52 Chunk-TASSER server for protein structure prediction in CASP9 ......................................................................... 52 CIRCLE ................................................................................................................................. 54 Template based modeling server with Model Quality Assessment Program circle ............................................ 54 CNIO ................................................................................................................................... 55 Using predicted contacts to select model structures .......................................................................................... 55 CONFUZZ ............................................................................................................................. 57 ConFuzz residue-residue proximity prediction metaserver ................................................................................. 57 CONQUASS .......................................................................................................................... 59 ConQuass: using evolutionary conservation for quality assessment of protein model structures ...................... 59 CPU_HSFANG ...................................................................................................................... 61 Identification of native-like protein structures among sets of decoys employing a novel average measures approach ............................................................................................................................................................. 61 3 DCLAB ................................................................................................................................. 63 Combining Spectral Analysis with Motif Search and Homology Modeling for Protein Structure Prediction ...... 63 DILL ..................................................................................................................................... 65 Physics-Based Structure Prediction by Zipping and Assembly ............................................................................ 65 DISTILL ................................................................................................................................ 66 DISTILL_HUMAN .................................................................................................................. 66 Distill: protein structure prediction by Machine Learning ................................................................................... 66 DISTILL_NNPIF ..................................................................................................................... 68 DOKHLAB ............................................................................................................................ 69 Protein Structure Prediction by Ab Initio Folding using Discrete Molecular Dynamics ....................................... 69 ELOFSSON ........................................................................................................................... 70 PCONS ................................................................................................................................. 70 PCOMB ............................................................................................................................... 70 PROQ .................................................................................................................................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    293 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us