Gravitational Wave Memory from Core-Collapse Supernovae C

Gravitational Wave Memory from Core-Collapse Supernovae C

Gravitational Wave Memory from Core-Collapse Supernovae C. Richardson1, H. Andresen2, K. Gill3, M. Szczepanczyk4, A. Wongwathanarat5, M. Zanolin1, and S. Kemper1 Embry-Riddle Aeronautical University1, Max Planck Institute for Gravitational Physics (Albert Einstein Institute)2, Harvard University, Department of Astronomy3, University of Florida, Department of Physics4, and Max Planck Institute for Astrophysics5 What is a Gravitational Wave Memory Angular Dependence Visualization of a • Gravitational Waves are a deformation of space-time due to large amounts of energy. • It is believed that memory developed in the case of Core-Collapse • The memory of a gravitational wave is permanent deformation of spacetime which manifests asymmetric explosions. Here we investigate if two Supernova in the Low Frequency part of the signal. simplified analytical models of explosion (Prolate and Simulation in 3D • Both regular mass and neutrinos contribute (differently) to the amplitude of the memory. Oblate) ae able to reproduce the angular dependence of Simulations by the amplitude of a simulated memory signal. Florian Hanke, Andreas Marek, Oblate Prolate. Bernhard Mueller, & Hans-Thomas Janka Visualization by E. Erastova & M. Rampp. In-Band Portion of Memory Spectrum • Different earth and space-based laser interferometers have different low frequency components of the noise, and therefore different sensitivity to the memory. a b c d • The four plots above represent; a) Amplitude of the h+ component of the memory in the prolate explosion, b) h+ component of the memory in the numerical simulation, c) Amplitude of the hx component of the memory in the prolate explosion, and d) hx component of the memory in the numerical simulation. • The direction of explosion of the prolate toy model was chosen to minimize the match with the numerical simulation. Conclusion and Next Steps • Different interferometers will capture different fractions of the memory energy. • A qualitative good match was observed between the prolate toy model and the numerical simulation, even with evidence for the need of higher order spherical harmonics in the model. • The oblate is still under investigation • We are drafting a journal article for publication. References A. Wongwathanarat, H. –Th Janka, and E. Muller. Three-dimensional neutrino-driven John David Jackson. Classical electrodynamics. Wiley, New York, NY, 3rd ed. edition, 1999. B. Schutz. A First Course in General Relativity. Cambridge University Press, 2009. supernovae: Neutron star kicks, spins, and asymmetric ejection of nucleosynthesis products M. Maggiore. Gravitational Waves: Astrophysics and Cosmology. Gravitational Waves. Oxford University Press, 2018. Marek Jan Szczepanczyk. Multimessenger Astronomy. Ph.D. Thesis 2018..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    1 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us