Identity Function Handout

Identity Function Handout

Identity Function – Handout 1 Certain functions that are used repeatedly in mathematics are called special functions. These functions come from basic functions called parent functions. The parent function gives us a general idea of what the graph looks like. If you are familiar with the parent functions, it makes graphing the families of that function much easier. The Identity Function One such parent function is the identity function . The equation is y = x and its graph is a line. It passes through the origin and its slope is 1. 4 3 2 1 -4-3-2-1 1 2 3 4 -1 -2 -3 -4 From this parent comes a family of graphs called linear functions . A linear function’s general equation is y = m(x – h) + k . (This can be written as y = mx + b when simplified.) VERTICAL STRETCHING TRANSLATIONS yx= yx =−−1( 0) 0 yx=3 yx =−− 300() I. Graph: yx=8 yx =−− 800() yx=1 y =−− 1 () x 0 0 3 3 yx=2 y =−− 2 () x 0 0 5 5 What conclusion can you make about the effect of the value of m on the graph of the parent function y = x ? TRANSLATIONS REFLECTING ALONG THE X-AXIS yx= yx =−−1( 0) 0 y=−3 x y =− 300() x −− II. Graph: y=−8 x y =− 800() x −− y=−1 xy =− 1 () x −−0 0 3 3 y=−2 xy =− 2 () x −−0 0 5 5 What conclusion can you make about the effect of the sign of m on the graph of the parent function y = x ? VERTICAL SHIFT TRANSLATIONS yx= yx =−−1( 0) 0 yx=+2 yx =−+ 102() III. Graph: yx=+5 yx =−+ 105() yx=−3 yx =−− 103() yx=−8 yx =−− 108() What conclusion can you make about the effect of k on the graph of the parent function y = x ? PHASE (HORIZONTAL) TRANSLATIONS yx= yx =−−1( 0) 0 y=1() x − 2 + 0 IV. Graph: y=1() x − 6 + 0 y=1() x + 3 + 0 y=1() x + 7 + 0 What conclusion can you make about the effect of h on the graph of the parent function y = x ? SUMMARY y= mx( − h) + k 1) When m >1, the line becomes steeper (a stretch). When m <1, the line becomes flatter (a compression). When m =1 there is no change in the steepness or flatness of the line. 2) When m > 0 (i.e. positive) the line slants up and to the right and is not reflected across the x- axis. When m < 0 (i.e. negative) the line slants up and to the left and is reflected across the x-axis. 3) The effect of k on the graph of the parent function y = x is called the vertical shift . If k > 0 (i.e. positive), the graph shifts up k units . If k < 0 (i.e. negative), the graph shifts down k units . 4) The effect of h on the graph of the parent function y = x is called the phase shift or horizontal shift . When h > 0 (i.e. (x – h)) the graph shifts to the right h units . When h < 0 (i.e. (x + h)) the graph shifts to the left h units . You can see that if you write the equation of a line in point-slope form , it is easy to make 4 conclusions about the function in relation to the graph of its parent function y = x . Directions: Based on the discovery lesson, answer the following and graph. I. For each problem: a) Name the function e) State the phase shift b) Name the parent function f) State the vertical shift c) State the vertical stretch or compression g) Starting Point d) Reflection? h) Graph 1 1. y = − 4 2. y= −3 x + 1 3. y= x + 1 3 a)____________________ a)___________________ a)___________________ b)____________________ b)___________________ b)___________________ c)____________________ c)___________________ c)___________________ d)____________________ d)___________________ d)___________________ e)____________________ e)___________________ e)___________________ f) ___________________ f) ___________________ f) ___________________ g) ___________________ g) ___________________ g) ___________________ 2 4. y = − ( x +3) − 4 5. y= 5 x 6. y = ()x −2 + 3 3 a)____________________ a)___________________ a)___________________ b)____________________ b)___________________ b)___________________ c)____________________ c)___________________ c)___________________ d)____________________ d)___________________ d)___________________ e)____________________ e)___________________ e)___________________ f) ___________________ f) ___________________ f) ___________________ g) ___________________ g) ___________________ g) ___________________ 1 7. y =π 8. y = − ()x −0 − 5 9. y = 0 4 a)____________________ a)___________________ a)___________________ b)____________________ b)___________________ b)___________________ c)____________________ c)___________________ c)___________________ d)____________________ d)___________________ d)___________________ e)____________________ e)___________________ e)___________________ f) ___________________ f) ___________________ f) ___________________ g) ___________________ g) ___________________ g) ___________________ II. For each graph : a) Name the function b) Name the parent function c) Write the equation from the graph in the form y= m ( x− h) + k 1. a)____________________ 2. a)___________________ 3. a)___________________ b)____________________ b)___________________ b)___________________ c)____________________ c)___________________ c)___________________ 6 6 6 5 5 5 4 4 4 3 3 3 2 2 2 1 1 1 -6-5-4-3-2-1 1 2 3 4 5 6 -6-5-4-3-2-1 1 2 3 4 5 6 -6-5-4-3-2-1 1 2 3 4 5 6 -1 -1 -1 -2 -2 -2 -3 -3 -3 -4 -4 -4 -5 -5 -5 -6 -6 -6 4. a)____________________ 5. a)___________________ 6. a)___________________ b)____________________ b)___________________ b)___________________ c)____________________ c)___________________ c)___________________ 6 6 6 5 5 5 4 4 4 3 3 3 2 2 2 1 1 1 -6-5-4-3-2-1 1 2 3 4 5 6 -6-5-4-3-2-1 1 2 3 4 5 6 -6-5-4-3-2-1 1 2 3 4 5 6 -1 -1 -1 -2 -2 -2 -3 -3 -3 -4 -4 -4 -5 -5 -5 -6 -6 -6.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    5 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us