Defeasible Inclusions in Low-Complexity Dls: Preliminary Notes

Defeasible Inclusions in Low-Complexity Dls: Preliminary Notes

Defeasible Inclusions in Low-Complexity DLs: Preliminary Notes P. A. Bonatti M. Faella L. Sauro [email protected] [email protected] [email protected] Department of Physics University of Naples “Federico II” Abstract bodies of semantic web knowledge. The latter is interesting because it is spontaneously adopted in major biomedical on- We analyze the complexity of reasoning with cir- tologies. It is interesting to investigate whether the syntactic cumscribed low-complexity DLs such as DL-lite EL restrictions obeyed by such logics decrease the complexity of and the family, under suitable restrictions on reasoning also in a nonmonotonic context. the use of abnormality predicates. We prove that In this paper, we identify less complex circumscribed DLs in circumscribed DL-liteR complexity drops from by (i) using the constructs supported by DL-liteR and by the NExpNP to the second level of the polynomial hier- EL family, and (ii) restricting the use of abnormality predi- archy. In EL, reasoning remains ExpTime-hard, in cates by hiding them into “defeasible” inclusion axioms, sim- general. However, by restricting the possible occur- ilar to those adopted by [Straccia, 1993]. The latter restriction rences of existential restrictions, we obtain mem- p p is also expected to make the formalism easier to use. Under bership in Σ and Π for an extension of EL. 2 2 such restrictions, we prove that (i) satisfiability checking for circumscribed knowledge bases (KB) is equivalent to classi- 1 Introduction cal KB satisfiability, and hence in P (sometimes even triv- ⊥ The ample literature on nonmonotonic extensions of descrip- ial) for the logics we consider here: DL-liteR, EL, and EL ; (ii) concept satisfiability, instance checking, and subsumption tion logics (DLs) witnesses a long-standing interest for this ⊥ topic (for some early approaches see [Brewka, 1987; Straccia, over circumscribed DL-liteR and left local EL KBs remain 1993; Baader and Hollunder, 1995]). Recently, fresh motiva- within the second level of the polynomial hierarchy; (iii) the ⊥ tions came from the construction of ontologies for biomed- same reasoning tasks for circumscribed EL KBs, unfortu- ical domains (cf. [Rector, 2004; Stevens et al., 2007]) and nately, remain ExpTime-hard. from the use of description logics as policy languages [Us- Further related approaches are [Cadoli et al., 1990; Strac- zok et al., 2004; Kagal et al., 2003; Tonti et al., 2003] where cia, 1993].In[Cadoli et al., 1990], a fragment of ALE under nonmonotonic reasoning is needed to properly encode default minimal entailment (an instance of circumscription where all policies and authorization inheritance (cf. [Bonatti and Sama- predicates are minimized with the same priority) is proved p rati, 2003]). Several recent works [Donini et al., 1998; 1997; to belong to Π2. Our approach adopts different DLs and 2002; Bonatti et al., 2006; Giordano et al., 2008] improved more general forms of circumscription, supporting priorities our understanding of the complexity of nonmonotonic de- as well as fixed and variable predicates. In [Straccia, 1993] scription logics based on default logic, autoepistemic logic, the underlying nonmonotonic logic is a prioritized version of and circumscription. Unfortunately, nonmonotonic DLs are default logic. The paper contains NP-hardness results for ex- typically very complex. For example, reasoning with cir- tremely simplified DLs. NP cumscribed ALC knowledge bases is NExp -hard [Bonatti The rest of the paper is organized as follows: In Section 2, et al., 2006], and a tableaux calculus for reasoning with au- we recall the basics of DLs. Section 3 introduces the special- toepistemic knowledge bases is in 3-ExpTime [Donini et al., ized circumscription framework we adopt here. After some 2002]. Besides such complexity results, it turns out that some auxiliary results (Section 4), sections 5 and 6 illustrate the re- theoretical properties that are very important for the imple- sults on DL-liteR and the EL family, respectively. Section 7 mentation of reasoning in “classical” DLs—such as the tree concludes the paper with a summary of the results and some model property for example— do not carry over to nonmono- directions for future work. tonic DLs. Independently from the works on nonmonotonic DLs, low- 2 Preliminaries complexity (monotonic) DLs of practical interest have been recently studied. Here we will focus on DL-liteR [Cal- In DLs, concepts are inductively defined with a set of con- vanese et al., 2005] and the EL family [Baader, 2003; structors, starting with a set NC of concept names, a set NR Baader et al., 2005], whose inferences are in PTIME. The of role names, and (possibly) a set NI of individual names (all former is motivated by efficient query processing over large countably infinite). We use the term predicates to refer to ele- 696 Name Syntax Semantics 3 Defeasible knowledge R− (R−)I = {(d, e) | (e, d) ∈ RI } inverse role A defeasible inclusion (DI) is an expression A n C whose nominal {a} {aI } intended meaning is: A’s elements are normally in C. I I DL negation ¬C Δ \ C A defeasible knowledge base (DKB) in a logic is a pair (S, D) S DL D conjunction C D CI ∩ DI where is a strong knowledge base, and is a I I I set of DIs A n C such that C is a DL concepts. existential ∃R.C {d ∈ Δ |∃(d, e) ∈ R : e ∈ C } restriction Example 3.1 The sentences: “in humans, the heart is usu- top I =ΔI ally located on the left-hand side of the body; in humans with ⊥ ⊥I = ∅ situs inversus, the heart is located on the right-hand side of bottom the body” [Rector, 2004; Stevens et al., 2007] can be formu- EL⊥ Figure 1: Syntax and semantics of some DL constructs lated with the following inclusions ∃ .∃ . ; N ∪ N A B Human n has heart has position Left ments of C R. Hereafter, letters and will range over Situs Inversus ∃has heart.∃has position.Right ; NC, P will range over NR, and a, b, c will range over NI. The ∃has heart.∃has position.Left concepts of the DLs dealt with in this paper are formed using ∃ .∃ . ⊥. the constructors shown in Figure 1. There, the inverse role has heart has position Right constructor is the only role constructor, whereas the remain- Intuitively, a model of (S, D) is a model of S that max- ing constructors are concept constructors. Letters C, D will R, S imizes the set of individuals satisfying the defeasible inclu- range over concepts and letters over (possibly inverse) sions in D, resolving conflicts by means of specificity when- roles. ever possible. The semantics of the above concepts is defined in terms of I =(ΔI , ·I ) ΔI In order to formalize this idea, we first have to specify how interpretations . The domain is a non-empty DIs are prioritized. We determine specificity based on clas- set of individuals and the interpretation function ·I maps each I I sically valid inclusions. For all DIs δ1 =(A1 n C1) and concept name A ∈ NC to a set A ⊆ Δ , each role name I I δ2 =(A2 n C2), we write r ∈ NR to a binary relation r on Δ , and each individual I I I name a ∈ NI to an individual a ∈ Δ . The extension of · δ1 ≺S δ2 iff A1 S A2 and A2 S A1 . to inverse roles and arbitrary concepts is inductively defined S as shown in the third column of Figure 1. An interpretation I For the sake of readability, the subscript will be omitted is called a model of a concept C if CI = ∅.IfI is a model when clear from context. of C, we also say that C is satisfied by I. Second, we have to specify how to deal with the predicates A (strong) knowledge base is a finite set of (i) concept in- occurring in the knowledge base: is their extension allowed clusions (CIs) C D where C and D are concepts, (ii) con- to vary in order to satisfy defeasible inclusions? A discussion cept assertions A(a) and role assertions P (a, b), where a, b of the effects of letting predicates vary vs. fixing their exten- sion can be found in [Bonatti et al., 2006]; they conclude that are individual names, P ∈ NR, and A ∈ NC, (iii) role in- clusions (RIs) R R. An interpretation I satisfies (i) a CI the appropriate choice is application dependent. Here we let C D if CI ⊆ DI , (ii) an assertion C(a) if aI ∈ CI , (iii) roles vary to avoid undecidability problems (cf. [Bonatti et N an assertion R(a, b) if (aI ,bI ) ∈ rI , and (iv) a RI R R al., 2006]). The set of concept names C, on the contrary, F V RI ⊆ RI I can be arbitrarily partitioned into two sets and contain- iff . Then, is a model of a strong knowledge base ing fixed and varying predicates, respectively; we denote this S iff I satisfies all the elements of S. semantics with CircF . We write C S D iff for all models I of S, I satisfies F D ≺ C D The set , the DIs , and their ordering induce a strict . partial order over interpretations, defined below. As we move [ ] The logic DL-lightR Calvanese et al., 2005 restricts con- down the ordering we find interpretations that are more and cept inclusions to expressions CL CR, where more normal w.r.t. D. For all δ =(A n C) and all interpre- − CL ::= A |∃RR::= P | P tations I let the set of individuals satisfying δ be: CR ::= CL |¬CL sat (δ)={x ∈ ΔI | x ∈ AI x ∈ CI } . (as usual, ∃R abbreviates ∃R. ). I or EL The logic [Baader, 2003; Baader et al., 2005] restricts Definition 3.2 For all interpretations I and J , and all F ⊆ knowledge bases to assertions and concept inclusions built NC, let I <D,F J iff: from the following constructs: ΔI =ΔJ C ::= A ||C1 C2 |∃P.C 1.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    6 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us