Physical Modeling of Junction Processing in FDSOI Devices for 20 Nm Node and Below Benoît Sklenard

Physical Modeling of Junction Processing in FDSOI Devices for 20 Nm Node and Below Benoît Sklenard

Physical modeling of junction processing in FDSOI devices for 20 nm node and below Benoît Sklenard To cite this version: Benoît Sklenard. Physical modeling of junction processing in FDSOI devices for 20 nm node and below. Micro and nanotechnologies/Microelectronics. Université de Grenoble, 2014. English. NNT : 2014GRENT031. tel-01291522 HAL Id: tel-01291522 https://tel.archives-ouvertes.fr/tel-01291522 Submitted on 21 Mar 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE L¶81,9(RSITÉ DE GREN2BLE Spécialité : Nano-Electronique et Nano-Technologies Arrêté ministériel : 7 août 2006 Présentée par Benoît SKLENARD Thèse dirigée par Sorin CRISTOLOVEANU préparée au sein des Laboratoires CEA Leti et IMEP-LAHC dans l'École Doctorale EEATS Modélisation physique de la réalisation des jonctions FDSOI pour le nŒud 20 nm et au-delà Thèse soutenue publiquement le 10 Avril 2014, devant le jury composé de : M. Alain CLAVERIE Directeur de recherche, CNRS/CEMES (Président) M. Nick COWERN Professeur, Newcastle University, UK (Rapporteur) Mme Evelyne LAMPIN Chargée de recherche, CNRS/IEMN (Rapporteur) Mlle Perrine BATUDE Ingénieur, docteur, CEA Leti (Co-encadrante) M. Sorin CRISTOLOVEANU Directeur de recherche, IMEP-LAHC (Directeur de thèse) M. Ignacio MARTIN-BRAGADO Docteur, IMDEA Materials, Espagne (Co-encadrant) M. Clément TAVERNIER Ingénieur, STMicroelectronics (Co-encadrant, invité au Jury) Mme Pierrette RIVALLIN Ingénieur, CEA Leti (Co-encadrante, invitée au Jury) iii Acknowledgments First and foremost I want to thank my advisor Sorin Cristoloveanu and my technical super- visors Perrine Batude, Pierrette Rivallin, Ignacio Martín Bragado and Clément Tavernier. I would like to acknowledge their advices, support and great patience at all times. I am also gratefull to the members of TCAD team at STMicroelectronics including Olivier Saxod, Pierre Boulenc (former member now at IMEC), Floria Blanchet, Sébastien Gallois- Garreignot (actually he is not really from TCAD team), Denis Rideau, Frédéric Monsieur... and to my former technical supervisors Ardechir Pakfar and François Wacquant (one week!). I would also like to thank Assawer Soussou and Zahi Essa who have started and finished their PhD with me, and the other PhD students I have met during these 3 years: Amina Sid- houm, Andres Quiroga, Julien Dura, Hadrien Lepage, Cuiqin Xu, Papa Momar Souare, Komi Atchou Ewuame, Olivier Nier, Yvan Denis, Gabriel Mugny, Pierre Dorion, Sébastien Guar- nay, Anouar Idrissi–Eloudrhiri, Luca Pasini, Laura Agudo, Mónica Prieto de Pedro, José Luis Gómez-Sellés, Ignacio Dopico... In CEA Leti, I thank the members of the modeling and simulation laboratory: Philippe Blaise, François Triozon, Joris Lacord, Estelle Brague, Jean-Charles Barbe, Benoît Mathieu, Sébastien Martinie, Olga Cueto, Marie–Anne Jaud, François De Crecy, Hélène Jacquinot, Gilles Le Carval, Luca Lucci, Patrick Martin, Marina Reyboz, Pascal Scheiblin, Anne–Sophie Royet. I have also appreciated the help and collaboration with many people from other labora- tories including Olivier Faynot, Maud Vinet, Thierry Poiroux, David Cooper, Adeline Grenier, Denis Blachier, Frédéric Mazen, Shay Reboh... I am most grateful to Séb, Maria, Karine and Assawer for their encouragement during the writing of the PhD thesis and the preparation of the defense. For this dissertation I would like to thank my reading committee members Evelyne Lampin and Nick Cowern for their time and interest. I would also like to thank Alain Claverie for accepting to be part of my oral defense committee. Last, but by no means least, I thank my family, for all their love and encouragement. My parents, brothers and sister have given me their support and encouragement throughout the PhD. Benoît Sklénard September 2014 Contents List of Figures ix List of Tables xv Introduction 1 1 Context and goal of this work 3 1.1 Technological context ..................................... 3 1.1.1 3D sequential integration ............................... 4 1.1.2 Low thermal budget process ............................. 5 1.1.2.1 Amorphization ............................... 7 1.1.2.2 Recrystallization .............................. 8 1.1.3 Challenges for junction formation .......................... 9 1.1.3.1 Amorphization engineering ........................ 10 1.1.3.2 Recrystallization control .......................... 10 1.1.3.3 Influence of End Of Range defects .................... 11 1.1.3.4 Dopant activation ............................. 11 1.1.3.5 The need of numerical simulation ..................... 11 1.2 Atomistic simulation ..................................... 12 1.2.1 Molecular Dynamics methods ............................ 13 1.2.2 Kinetic Monte Carlo methods ............................ 14 1.2.2.1 Transition State Theory (TST) ...................... 16 1.2.2.2 Presentation of MMonCa ......................... 17 1.3 Goal of this work ....................................... 18 2 Solid Phase Epitaxial Regrowth of intrinsic silicon 19 2.1 Background .......................................... 20 2.1.1 Thermodynamics and kinetics of crystallization ................... 20 2.1.1.1 Thermodynamics of amorphous to crystalline transition . 20 2.1.1.2 Kinetics of Solid Phase Epitaxial Regrowth (SPER) . 22 2.1.1.3 Kinetics of Random Nucleation and Growth (RNG) . 24 2.1.2 Anisotropy and defects formation .......................... 25 2.2 LKMC model ......................................... 27 2.2.1 Anisotropic growth .................................. 27 2.2.1.1 Implemented model ............................ 28 2.2.1.2 Plane detection ............................... 29 2.2.1.3 The particular case of {100} microscopic configurations . 29 2.2.2 Defect formation ................................... 30 2.3 Planar regrowth ........................................ 31 2.3.1 Model calibration ................................... 31 2.3.2 (100) substrate .................................... 33 2.3.3 (110) substrate .................................... 34 2.3.4 (111) substrate .................................... 34 2.4 Multidirectional SPER .................................... 37 2.4.1 Influence of trenches ................................. 38 vi Contents 2.4.2 Regrowth of box–shaped amorphous regions .................... 43 2.4.3 SPER in FDSOI MOSFETs ............................. 46 2.4.3.1 SPER of 110 –aligned α–Si(100) .................... 47 x y 2.4.3.2 SPER of 100 –aligned α–Si(100) .................... 50 x y 2.5 Summary ........................................... 50 3 Impact of stress on Solid Phase Epitaxial Regrowth 53 3.1 Conventions and notations .................................. 54 3.2 Background .......................................... 54 3.2.1 Influence of hydrostatic pressure: the notion of activation volume . 55 3.2.2 Generalization to a non–hydrostatic stress ...................... 56 3.2.2.1 The concept of activation strain tensor . 56 3.2.2.2 A dual–timescale model of stressed SPER . 58 3.3 LKMC Model ......................................... 60 3.4 Atomistic simulation of SPER upon stress .......................... 61 3.4.1 In–plane uniaxial stress ................................ 62 3.4.1.1 Regrowth velocity ............................. 62 3.4.1.2 Interface roughness ............................ 63 3.4.2 Normal uniaxial stress ................................ 65 3.4.3 Hydrosatic pressure .................................. 65 3.5 Summary ........................................... 66 4 Influence of impurities on Solid Phase Epitaxial Regrowth 69 4.1 Background .......................................... 69 4.1.1 Solid solubility and metastable solubility ...................... 69 4.1.1.1 Solid solubility ............................... 70 4.1.1.2 Metastable Solubility ........................... 71 4.1.2 Impurity–related mechanisms during SPER ..................... 74 4.1.2.1 Impurity–dependent regrowth velocity . 74 4.1.2.2 Impurity redistribution ........................... 75 4.2 Dopant–enhanced regrowth velocity ............................. 76 4.2.1 Analytical modeling ................................. 76 4.2.2 Atomistic LKMC modeling ............................. 80 4.2.2.1 Electrostatic calculation .......................... 80 4.2.2.2 LKMC model ............................... 81 4.2.2.3 Results ................................... 81 4.3 Summary ........................................... 85 5 Summary and suggestions for future work 87 5.1 Summary ........................................... 87 5.1.1 Regrowth anisotropy and regrowth–induced defects . 87 5.1.2 Influence of stress .................................. 88 5.1.3 Influence of dopants ................................. 88 5.2 Suggestions for future work .................................. 89 A Amorphous/Crystalline interface extraction 91 A.1 Interface position ....................................... 91 A.2 Interface roughness ...................................... 92 A.3 Interface velocity ....................................... 92 Contents vii B Numerical

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    142 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us