Unsteady coupled convection, conduction and radiation simulations on parallel architectures for combustion applications Jorge Amaya To cite this version: Jorge Amaya. Unsteady coupled convection, conduction and radiation simulations on parallel architec- tures for combustion applications. Fluid Dynamics [physics.flu-dyn]. Institut National Polytechnique de Toulouse - INPT, 2010. English. tel-00554889 HAL Id: tel-00554889 https://tel.archives-ouvertes.fr/tel-00554889 Submitted on 11 Jan 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESETHESE En vue de l'obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par : Institut National Polytechnique de Toulouse Discipline ou spécialité : Dynamique des Fluides Présentée et soutenue par Jorge AMAYA Le 24 Juin 2010 Titre : Unsteady coupled convection, conduction and radiation simulations on parallel architectures for combustion applications JURY François-Xavier ROUX Prof. à l’Université Paris 6 Rapporteur Olivier GICQUEL Prof. à l’Ecole Centrale Paris Président du jury Mouna EL HAFI Maître assist. à l’Ecole des Mines d’Albi Examinateur Pedro COELHO Prof. à l’IST, Portugal Examinateur Denis LEMONNIER Directeur de recherche au LET-ENSMA Examinateur Thomas LEDERLIN Ing. de recherche à Turbomeca Examinateur Thierry POINSOT Directeur de recherche à l’IMFT Directeur Ecole doctorale : Mécanique, Énergétique, Génie civil Et Procédés Unité de recherche : CERFACS Directeur(s) de Thèse : Thierry POINSOT (Directeur), Olivier VERMOREL (co-directeur) Contents 1 Preface xi 2 Introduction xv 3 Introduction xix I Heat and mass transfers in fluids and solids 1 4 Heat transfer in solids 2 4.1 TheFourierlaw ........................................... 3 4.2 Physicalpropertiesofsolids.................................... 3 4.3 Theheatequation.......................................... 4 4.3.1 Initialandboundaryconditions . 5 4.4 ThecodeAVTP ........................................... 6 4.5 Analyticalandnumericalsolutionsforthetransientheatequation . 8 4.5.1 TheLow-Biotapproximation . 9 4.5.2 ResolutionbytheFouriermethod . 10 4.5.3 ResolutionusingtheLaplacetransform. 14 4.6 Temperature dependence of the solid properties . 17 4.7 Heattransferina3Dgeometry .................................. 18 5 Heat and mass transfer in fluid flows 23 i ii CONTENTS 5.1 Thermochemistry of multicomponent mixtures . .............. 23 5.1.1 Primitivevariables ..................................... 24 5.1.2 Chemicalkinetics...................................... 28 5.2 ThemulticomponentNavier-Stokesequations. 32 5.2.1 Turbulentflows ....................................... 35 5.2.2 Combustionmodels .................................... 41 5.2.3 Near-wallflowmodeling.................................. 44 5.3 ThecodeAVBP ........................................... 47 5.3.1 Introduction......................................... 47 5.3.2 Overview of the numerical methods in AVBP . 48 5.3.3 Boundaryconditions.................................... 49 6 Radiative heat transfer 50 6.1 Introduction............................................. 51 6.2 Basicconcepts............................................ 52 6.2.1 Principlesanddefinitions ................................. 53 6.2.2 Radiative properties of surfaces . .................. 59 6.2.3 Radiativefluxatthewalls ................................. 63 6.3 TheRadiativeTransferEquation(RTE) . 63 6.3.1 Intensityattenuation.................................... 63 6.3.2 Augmentation........................................ 65 6.3.3 Theequationoftransfer.................................. 67 6.3.4 IntegralformulationoftheRTE. 69 6.3.5 The macroscopic radiative source term . 70 6.4 Radiativepropertiesofparticipatingmedia. 71 6.4.1 Electronicenergytransitionsinatoms . 72 CONTENTS iii 6.4.2 Molecular energy transitions . .......... 73 6.4.3 Lineradiativeintensityandbroadening. 75 6.4.4 Radiation in combustion applications . 78 6.5 Numericalsimulationofradiation . 81 6.5.1 Spectralmodelsforparticipatingmedia . 81 6.5.2 SpatialintegrationoftheRTE. 82 6.6 ThecodePRISSMA ......................................... 86 6.6.1 DOMonunstructuredmeshes .. ...... ..... ...... ..... ...... 86 6.6.2 Cell sweep procedure . 90 6.6.3 Spectralmodels....................................... 92 6.6.4 The discretized Radiative Transfer Equation . 109 6.6.5 Parallelismtechniques.. ..... ...... ..... ...... ..... ...... 110 6.6.6 Testcases........................................... 115 II Multi-physics simulations on parallel architectures 120 7 Combined conduction, convection and radiation 121 7.1 Introduction............................................. 122 7.1.1 Principlesofcoupling ................................... 122 7.1.2 Numericalaspectsofcoupling . 123 7.1.3 Combinedheattransfer .................................. 124 7.1.4 Technicalapproachinmulti-physics . 125 7.2 Fluid-SolidThermalInteractions(FSTI). 128 7.2.1 Thenear-wallflow ..................................... 129 7.2.2 FSTIcoupling ........................................ 139 7.3 Radiation-FluidThermalInteractions(RFTI). 149 iv CONTENTS 7.3.1 Background ...................................... 149 7.3.2 RFTIcoupling........................................ 150 7.3.3 Effects of radiation on the thermal boundary layer . 154 7.4 Solid-RadiationThermalInteractions(SRTI) . 160 7.5 Multi-physicscoupling....................................... 162 7.5.1 Thetimescalesofheattransfer. 162 7.5.2 Multi-physicscoupling(MPC) . 163 7.5.3 Synchronizationofthesolvers . 164 III Multi-physics simulation of an helicopter combustion chamber 167 8 LES simulation of an helicopter combustion chamber 168 8.1 Thestudycase............................................ 169 8.2 Numericalparameters ....................................... 170 8.3 QualityoftheLESsimulation . 174 8.4 Instantaneousfields ........................................ 176 8.5 Thecombustionmodelandtheflamestructure . 177 8.6 Averaged and standard deviation fields . 179 9 Coupled RFTI simulations of an helicopter combustion chamber 186 9.1 Radiation:numericalparameters . 187 9.2 Evaluationoftheradiationfields . 188 9.2.1 Themeanabsorptioncoefficient. 188 9.2.2 Instantaneousradiativefields. 188 9.2.3 Impact of the spectral model for the coupled application . 193 9.2.4 Conclusions ......................................... 198 9.3 ThecoupledRFTI.......................................... 199 CONTENTS v 9.3.1 Probesignals ................................... 200 9.3.2 Time-averaged fields . 202 9.3.3 Averaged radiation vs. radiation of the averaged fields . 208 9.3.4 Wallradiativeheatflux................................... 212 9.4 Conclusions ............................................. 213 10 Coupled FSTI simulation of a combustion chamber and a vaporizer injector 215 10.1Studycase .............................................. 216 10.2Numericalparameters ....................................... 217 10.3Couplingstrategy .......................................... 218 10.3.1 Evolution of the coupled FSTI simulation . 220 10.4Effectsonthesolidinjector . 221 10.4.1 Instantaneous temperature fields . 221 10.4.2 Time-averaged temperature fields . 222 10.5Effectsonthefluidflow ...................................... 224 10.5.1 Spectralanalysisoftheunsteadyflow . 224 10.5.2 Time-averaged flow inside the injector . 225 10.5.3 Mean temperature and heat release fields . 226 10.5.4RadialTemperatureFunction. 227 10.5.5Thepremixedcombustionzone . 227 10.6Conclusions ............................................. 229 11 Towards multi-physics: LES-DOM-Solid heat conduction coupling in a combustion cham- ber with vaporizer 233 11.1Introduction............................................. 234 11.2Numericalapproach ........................................ 234 11.3Instantaneousflamestructure . 236 vi CONTENTS 11.4 Impact on the time-averaged radiation . .............. 236 11.5Effectsonthetemperatureofthesolid . 239 11.6 Impact on the time-averaged fluid temperature . 240 11.6.1 Multi-physicsvs.uncoupledLES. 240 11.6.2 Multi-physicsvs.RFTIandFSTI . 241 11.7TheRTFprofiles........................................... 241 11.8Conclusion.............................................. 242 12 Conclusions 244 12.1Engineeringaccomplishments . 245 12.2Perspectives ............................................. 246 A The PALM environment 248 A.1 Thesoftware............................................. 249 A.1.1 Dynamiccoupling ..................................... 249 A.1.2 Parallelism.......................................... 250 A.1.3 End-pointcommunications. 250 A.1.4 Graphicaluserinterface .. ..... ...... ...... ..... ...... .... 251 A.2 Palmerizationofthecodes .................................... 251 A.2.1 Unitidentification ..................................... 251 A.2.2 Datamanipulation ..................................... 251 A.2.3 Paralleldistribution .................................... 252 A.3 ThePALMunitsformulti-physics . 252 A.3.1 TheunitAVBP........................................ 252 A.3.2 TheunitPRISSMA ..................................... 254 A.3.3 TheunitAVTP.......................................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages312 Page
-
File Size-