Elliptic Surfaces and Arithmetic Equidistribution for $\Mathbb {R

Elliptic Surfaces and Arithmetic Equidistribution for $\Mathbb {R

ELLIPTIC SURFACES AND ARITHMETIC EQUIDISTRIBUTION FOR R-DIVISORS ON CURVES LAURA DE MARCO AND NIKI MYRTO MAVRAKI Abstract. Suppose E → B is a non-isotrivial elliptic surface defined over a number field, for smooth projective curve B. Let k denote the function field Q(B) and E the associated elliptic curve over k. In this article, we construct adelically metrized R-divisors DX on the base curve B over a number field, for each X ∈ E(k) ⊗ R. We prove non-degeneracy of the Arakelov-Zhang intersection numbers DX · DY , as a biquadratic form on E(k) ⊗ R. As a consequence, we have the following Bogomolov-type statement for the N´eron- Tate height functions on the fibers Et(Q) of E over t ∈ B(Q): given points P1,...,Pm ∈ E(k) with m ≥ 2, there exist a non-repeating infinite sequence tn ∈ B(Q) and small- ′ ′ ′ height perturbations Pi,tn ∈ Etn (Q) of specializations Pi,tn so that the set {P1,tn ,...,Pm,tn } satisfies at least two independent linear relations for all n, if and only if the points P1,...,Pm are linearly dependent in E(k). This gives a new proof of results of Masser and Zannier [MZ1, MZ2] and of Barroero and Capuano [BC] and extends our earlier results [DM]. We also prove a general equidistribution theorem for adelically metrized R-divisors on curves (over a number field), extending the equidistribution theorems of Chambert-Loir, Thuillier, and Yuan [CL1, Th, Yu], and using results of Moriwaki [Mo2]. 1. Introduction Suppose E → B is an elliptic surface defined over a number field K. That is, E is a projective surface, B is a smooth projective curve, and there exists a section O : B → E, all defined over K, so that all but finitely many fibers Et, for t ∈ B(K), are smooth elliptic arXiv:2012.14529v1 [math.NT] 28 Dec 2020 curves with zero Ot. We say that the elliptic surface E → B is isotrivial if all of the smooth fibers Et are isomorphic over K. Let k denote the function field K(B); we also view the surface E as an elliptic curve E over the field k. In this article, we study the geometry and arithmetic of the set E(k) of rational points over the function field k when E → B is not isotrivial. To this end, we consider height functions associated to adelically metrized R-divisors on the base curve B over a number field K, and we prove an equidistribution theorem for these heights. We study the Arakelov- Zhang intersection number of metrized R-divisors and prove that it induces a non-degenerate biquadratic form on E(k) ⊗ R. We relate this theorem to existing results, and provide, for Date: January 1, 2021. 1 ELLIPTIC SURFACES AND ARITHMETIC EQUIDISTRIBUTION FOR R-DIVISORS ON CURVES 2 example, a new proof of results of Masser and Zannier and of Barroero and Capuano on linear relations between specializations of independent sections. 1.1. Heights and the Arakelov-Zhang intersection of points in E(k). Assume that E → B is not isotrivial. Let hˆE denote the N´eron-Tate canonical height on E(k), associated ˆ to the choice of divisor O on E; let hEt denote the corresponding canonical height on the smooth fibers Et(K) for (all but finitely many) t ∈ B(K). By non-isotriviality, a point ˆ P ∈ E(k) satisfies hE(P ) = 0 if and only if it is torsion on E. We denote the specializations of P by Pt in the fiber Et. Tate showed in [Ta] that the canonical height function ˆ (1.1) hP (t) := hEt (Pt) is a Weil height on the base curve B(K), up to a bounded error. More precisely, there exists ˆ a Q-divisor DP on B of degree equal to hE(P ) so that hP (t)= hDP (t)+ O(1), where hDP is a Weil height on B(K) associated to DP . In [DM], we showed that we can also understand the small values of the function (1.1), from the point of view of equidistribution. Assume that hˆE(P ) > 0 (so that the function hP is nontrivial) and that, as a section, P : B →E is defined over the number field K. Building on work of Silverman [Si2, Si4, Si5], we showed that hP is the height induced by an ample line bundle on B (with divisor DP ) equipped with a continuous, adelic metric of non-negative curvature defined over K, denoted by DP and satisfying DP · DP =0 for the Arakelov-Zhang intersection number introduced in [Zh4]. In particular, we can then apply the equidistribution theorems of [CL1, Th, Yu] to deduce that the Gal(K/K)-orbits of points tn ∈ B(K) with height hP (tn) → 0 are uniformly distributed on B(C) with respect to the curvature distribution ωP for DP at an archimedean place of K. A similar equidistri- an bution occurs at each place v of K to a measure ωP,v on the Berkovich analytification Bv [DM, Corollary 1.2]. As a consequence of our main result in [DM], and combined with the results of Masser and Zannier [MZ1, MZ2], we have (1.2) DP · DQ ≥ 0 for all P, Q ∈ E(k), and DP · DQ =0 ⇐⇒ either P or Q is torsion, or ∃ α> 0 such that hP (t)= α hQ(t) for all t ∈ B(K) ⇐⇒ ∃ (n, m) ∈ Z2 \{(0, 0)} such that nP = mQ In particular, by the non-degeneracy of the N´eron-Tate bilinear form h·, ·iE on E(k), we have ˆ ˆ 2 (1.3) DP · DQ =0 ⇐⇒ hE(P )hE(Q)= hP, QiE for all P, Q ∈ E(k). ELLIPTIC SURFACES AND ARITHMETIC EQUIDISTRIBUTION FOR R-DIVISORS ON CURVES 3 The main result of this article is the proof of a stronger version of (1.3): Theorem 1.1. Let E → B be a non-isotrivial elliptic surface defined over a number field K. Let E be the corresponding elliptic curve over the field k = K(B). There exists a constant c> 0 so that ˆ ˆ 2 −1 ˆ ˆ 2 c hE(P )hE(Q) −hP, QiE ≤ DP · DQ ≤ c hE(P )hE(Q) −hP, QiE for all P, Q ∈ E(k), where h·, ·iE is the N´eron-Tate bilinear form on E(k). Remark 1.2. The upper bound on DP · DQ in Theorem 1.1 is relatively straightforward. The difficulty lies in the lower bound; in Section 7, we observe that this is equivalent to proving that DX · DY > 0 for all independent X,Y ∈ E(k) ⊗ R. 1.2. Motivation and context. Theorem 1.1 was inspired by the statements and proofs of the Bogomolov Conjecture [Ul, Zh3, SUZ], extending Raynaud’s theorem that settled the Manin-Mumford Conjecture [Ra]. Theorem 1.1 can be seen as a Bogomolov-type bound. The intersection number DP · DQ ˆ ˆ is related to the small values of the heights hEt (Pt)+ hEt (Qt) in the fibers Et(K). Indeed, as a consequence of Zhang’s Inequality [Zh4, Theorem 1.10] applied to the sum DP + DQ, and the fact that hP (t) ≥ 0 at all points t ∈ B(K) for every P ∈ E(k)[DM, Proposition 4.3], we have 1 DP · DQ (1.4) ess.min. (hP + hQ) ≤ ≤ ess.min. (hP + hQ) 2 hˆE(P )+ hˆE(Q) for every pair of non-torsion P, Q ∈ E(k). The essential minimum is defined by ess.min.(f)= supF infB\F f over all finite sets F in B(K). Bogomolov-type bounds have found many applications in problems of unlikely intersections. In Section 7, we explain that Theorem 1.1 is equivalent to the following: Theorem 1.3. Let E → B be a non-isotrivial elliptic surface defined over a number field, and let π : E m → B be its m-th fibered power with m ≥ 2. Let E m,{2} denote the union of flat subgroup schemes of E m of codimension at least 2, and consider the tubular neighborhood m,{2} m ′ m,{2} ′ ′ T (E , ǫ)= P ∈E : ∃P ∈E (Q) with π(P )= π(P ) and hˆ m (P − P ) ≤ ǫ Eπ(P ) Then, for any irreduciblen curve C in E m, defined over a number field and dominatingoB, there exists ǫ> 0 such that C ∩ T (E m,{2}, ǫ) is contained in a finite union of flat subgroup schemes of positive codimension. See, e.g., [BC, Lemma 2.2] for definitions and a classification of flat subgroup schemes. ELLIPTIC SURFACES AND ARITHMETIC EQUIDISTRIBUTION FOR R-DIVISORS ON CURVES 4 Remark 1.4. The conclusion of Theorem 1.3 with ǫ = 0 is a result of Barroero and Capuano [BC, Theorem 2.1]: using techniques involving o-minimality and transcendence theory, simi- lar to those of [MZ1, MZ2] (which treated the intersections of curves C with T (E m,{m}, 0), the torsion subgroups), they show that C ∩ T (E m,{2}, 0) is contained in a finite union of flat sub- group schemes of positive codimension. Thus Theorem 1.3 may be seen as a Bogomolov-type extension of [BC, Theorem 2.1], while providing a new proof of results in [BC, MZ1, MZ2]. Our main result in [DM] treated the intersections of C with the smaller tube T (E m,{m}, ǫ). In [Zh2], Zhang proposed the investigation of a function on the base curve B that detects drops in rank of the specializations of a subgroup of E(k): given a finitely-generated subgroup Λ of E(k) of rank m ≥ 1, if the torsion-free part of Λ is generated by S1,...,Sm, let (1.5) hΛ(t) := det(hSi,Sjit)i,j ≥ 0 on B(K), where defined, where h·, ·it is the N´eron-Tate bilinear form on the specialization Λt in the fiber Et.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    46 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us