Mcwilliams Center for Cosmology

Mcwilliams Center for Cosmology

McWilliams Center for Cosmology McWilliams Center for Cosmology McWilliams Center for Cosmology McWilliams Center for Cosmology ,CODQTGG Rachel Mandelbaum (+Optimus Prime) Observational cosmology: • how can we make the best use of large datasets? (+stats, ML connection) • dark energy • the galaxy-dark matter connection I measure this: for tens of millions of galaxies to (statistically) map dark matter and answer these questions Data I use now: Future surveys I’m involved in: Hung-Jin Huang 0.2 0.090 0.118 0.062 0.047 0.118 0.088 0.044 0.036 0.186 0.016 70 0.011 0.011 − 0.011 − 0.011 − 0.011 − 0.011 − 0.011 0.011 − 0.011 0.011 ± ± ± ± ± ± ± ± ± ± 50 η 0.1 30 ∆ Fraction 10 1 24 23 22 21 0.40.81.2 0.20.61.0 0.6 0.2 0.20.6 0.30.50.70.9 1.41.61.82.02.2 0.15 0.25 0.10.30.5 0.4 0.00.4 − − 0−.1 − − − − . 0.090 ∆log(cen. R )[kpc/h] P ∆ 0.011 0.3 cen. Mr cen. color cen. e eff cen log(richness) z cluster e R ± dom 1 0.2 . − cen 0.1 3 Fraction − 21 Research: − 0.118 0.622 0.3 0.011 0.009 Mr 22 1 . ± ± 0.2 0 − . 23 − 0.1 Fraction cen intrinsic alignments in 24 − 0.8 0.062 0.062 0.084 0.7 1.2 0.011 0.011 0.011 0.6 redMaPPer clusters − ± − ± − ± 0.5 color . 0.4 0.8 0.3 Fraction cen 0.2 0.4 0.1 1.0 0.047 0.048 0.052 0.111 0.3 Advisor : 0.011 0.011 0.011 0.011 e − ± − ± − ± − ± . 0.2 0.6 cen 0.1 Fraction Rachel Mandelbaum 0.2 h] / 0.6 0.6 0.118 0.046 0.000 0.045 0.086 0.5 )[kpc − 0.011 − 0.011 − 0.011 − 0.011 0.011 ff 0.4 e 0.2 ± ± ± ± ± R 0.3 . 0.2 0.2 Fraction − 0.6 0.1 φsat − log(cen 0.6 ∆ 0.9 0.088 0.481 0.393 0.107 0.034 0.089 0.5 0.011 0.010 0.010 0.011 0.011 0.011 0.7 − ± − ± − ± ± − ± ± 0.4 cen 0.3 P 0.5 0.2 Fraction 0.1 0.3 0.5 2.2 0.044 0.164 0.288 0.099 0.003 0.087 0.025 0.4 2.0 0.011 0.011 0.011 0.011 0.011 0.011 0.011 − ± ± − ± ± ± ± ± 0.3 1.8 θcen 0.2 1.6 Fraction 0.1 log(richness) 1.4 0.036 0.175 0.152 0.153 0.074 0.214 0.005 0.022 0.3 0.011 − 0.011 − 0.011 − 0.011 0.011 − 0.011 − 0.011 − 0.011 0.25 ± ± ± ± ± ± ± ± 0.2 z 0.1 Fraction central 0.15 0.186 0.002 0.046 0.028 0.001 0.031 0.056 0.127 0.145 0.3 0.5 − 0.011 0.011 0.011 0.011 0.011 0.011 − 0.011 − 0.011 − 0.011 ± ± ± ± ± ± ± ± ± 0.2 0.3 Fraction cluster e 0.1 0.1 φsat 0.4 0.016 0.057 0.039 0.013 0.074 0.018 0.051 0.010 0.009 0.017 0.3 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 ± − ± ± − ± ± − ± − ± ± ± − ± R 0.2 ∆ 0.0 0.1 Fraction 0.4 − 10 30 50 70 3 1 1 24 23 22 21 0.40.81.2 0.20.61.0 0.6 0.2 0.20.6 0.30.50.70.9 1.41.61.82.02.2 0.15 0.25 0.10.30.5 0.4 0.00.4 − − − − 0−.1 − − − − ∆η cen. dom. cen. Mr cen. color cen. e ∆log(cen. Reff)[kpc/h] Pcen log(richness) z cluster e ∆R Sukhdeep Singh Graduate Student with Prof. Rachel Mandelbaum Research 0.8 20 LOWZ-CMB lensing Wm = 0.20 LOWZ-z1 15 W = 0.25 LOWZ-galaxy lensing 0.7 m LOWZ-z2 gm 10 Wm = 0.30 CMASS ° 1. Weak Lensing p r LOWZ Pullen+,15 5 0.6 0 i 5 G 0.5 Closed markers: Galaxy lensing Science E − h 100 LOWZ-CMB lensing Open markers: CMB lensing LOWZ-galaxy lensing 0.4 - Gravitational Physics error gm 1 10− 0.3 - Nature of Dark Matter, Dark Energy ° 0.2 100 101 102 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 rp [Mpc/h] z IA 2. Intrinsic Alignments measurement - Galaxy Formation and Evolution - Weak Lensing Systematics ́μ˧ͽ̏΍͕υ Ͱ˧ͽϝυυ̤ ࠇ °ųɯƚɟʲŏɾǞȩȘŏȀ żȩɯȒȩȀȩǃʿ ࠇ ĦƚŏǺ ƚȘɯǞȘǃ ࠇ ɯɾɟȩɯɾŏɾǞɯɾǞżɯ ࠇ ëɔŏɟɯǞɾʿ ࠘ ŏżǕǞȘƚ ƚŏɟȘǞȘǃ ÚȩɯɾƇȩż ʶǞɾǕ áŏżǕƚȀ ŏȘƇƚȀųŏʕȒ Danielle Leonard McWilliams Postdoctoral Fellow • Weak lensing + other LSS probes of non-standard cosmology, especially alternative theories of gravity • Degeneracies involving beyond-LCDM parameters • Understanding theoretical uncertainties, as related to next-generation surveys Matthew G. Walker Mao-Sheng Liu (Terrence) Advisor: Matthew Walker Study the distribution of dark matter at small scale through sampling-based inference, including: ρ g o • Likelihood Approximation L • Approximate Bayesian Computation • Machine Learning Log r Evan Tucker - 4th Year Grad Student Working with Matt Walker, we developed a new model for fitting galaxy spectra extracting population properties: age, [Fe/H], vlos, and mass. We are now developing a new mixture model to understands dynamics of galaxy clusters. Alex Ge!n"r-SamePostdoctoral# researcher Astroparticle physics astrophysical observation = dark matter + backgrounds particle physics ⇥ distribution gamma-rays dwarf galaxies 5 10− statistical tools ] annihilation 1 1 − 10 6 sr stellar dark matter 1 13390 18 11 − 1 Fermi Reticulums II 51 33 22 2 135.4 detecting unresolved sources − kinematics distribution 96.3 59.2 6 33.5 WIMPs 10− 19.9 11.5 6.5 3.9 2.3 [GeV cm 1.3 0.6 0.3 0.2 0.1 0.1 velocity dispersion profile pulsars, dF/dE correlations 2 E 7 10− 0 1 2 moving objects 10 10 10 Energy [GeV] search for new particles beyond the t VERITAS Standard Model + 24 ⌧ ⌧ − 10− 1.0 3 25 ] 10 ⌦ 1 Annihilation known populations of gamma- − 24 Draco y s β 0.8 3 ray emitters vs dark matter 25 , dJ/d 10− 23 ⌦ unassoc (178) bin (1) [cm ? 0.6 2 /d fsrq (100) hmb (3) i 10 22 v Decay bll (36) nov (1) σ h 21 decay 26 0.4 bcu (22) snr (13) − dJ inferred dark matter i 20 agn (2) spp (15) v 26 nlsy1 (2) psr (11) Curvature parameter σ x 0.5 10−1 distribution 0.2 h 10 3 19 statistical framework to 10 0.9 rdg (2) pwn (2) 19 ,J 18 gal (1) glc (6) J 0.8 0.0 1 0 1 2 3 4 5 extract particle physics 1 2 3 10 10 10 decay 17 − J Spectral index ↵ at 1 GeV 3σ 100 0.7 1.0 from astro data Mass [GeV] 16 0.4 ¯ b¯b hh 0.6 bb 15 2σ + 2 1 2 GeV 0 + 100.8− 10 GeV 10− 10 ⌧ ⌧ − µ µ− 0.5 2 1 10 ✓ [deg] 104 1σ 10− 1 GeV 1 2 3 0.4 10 10 10 0.6 spacetime correlation function 0.3 1000 0σ Mass [GeV] 0.3 Search power to search for moving sources 0.5 GeV 0.2 0.4 Angular separation [deg] 100 0.2 1σ Mass used for search [GeV] − 0.1 containment fraction Detection significance 0.1 J 0.2 10 2σ search for an 101 0.0 0 Counts 0 1 − 2 1 2 3 10 10 10 annihilation signal 10 10 10 Draco 3σ True mass [GeV] 0.0 1 Event energy [GeV] − 1 2 3 10 10 10 0.0 0.2 0.4 0.6 0.8 1.0 tail due to unresolved pulsars Mass [GeV] ✓ [deg] 0.1 0.01 20 25 30 35 40 Score Tina Kahniashvili The McWilliams Center For Cosmology – Cosmology – Astrophysics • Very Early Universe • Cosmic Magne9c Fields – Fundamental • MHD Turbulence Symmetries Tests – Gravita9onal Waves – Cosmic Microwave Background • Accelerated Expansion – Modified Gravity – Dark Energy • Astro-Par9cle Physics – Neutrino Mass Origin Hy Trac CMB Asst Prof 8307 Wean Hall First Stars & Galaxies [email protected] Galaxy Clusters Group Minghan Chen, Paul La Plante, Michelle Ntampaka, Jeff Patrick, Layne Price Interests Structure formation & evolution, large-scale structure, dark matter halos, Meshing Meshfree galaxies, clusters, cosmic reionization Tools Cosmological simulations, N-body, hydro, radiative transfer Ether (finite-volume particle method) Hyper (fast hydro-particle-mesh) Michelle'Ntampaka' Research:' Outreach:' • Graduate'student'working'in' • Early'Childhood'Astronomy' Hy'Trac’s'group' • Research:''Galaxy'Cluster' Dynamics'with'ML'and'Stats' Paul La Plante • Graduate student, soon-to-be postdoc • Works with Prof. Hy Trac • Simulations of helium reionization • Quasar properties, IGM thermal history, Lyman-alpha forest • Efficient, scalable algorithms Helium reionization in action for cosmological simulations z =2.9820 and analysis 1.0 HI 0.8 HeII 0.6 Flux 0.4 0.2 0.0 Peta-scale 0 5000 10000 15000 20000 computation Lyman-alpha forest used to v [km/s] measure large-scale structure Diane Turnshek, Special Faculty, Physics, CMU • Teaches Astronomy and manages classroom demos • Teacher Advisory Panelist at Carnegie Science Center • IDA Dark Sky Defender • Chair of IAU Technical Working Group against light pollution Layne Price Cosmo/Stats/ML Early universe Machine Bayesian theory learning modelling Jeff$Peterson:$Radio$Astronomy$With$ 20007receiver$Telescopes$ • Building$three$radically$new$telescopes$in$Canada$(CHIME),$ South$Africa$(HIRAX)$and$China$(Tianlai).$$ • Primary$Goals:$$ – Map$LSS$via$217cm$intensity$field—BAO$dark$energy$test$ – Find$and$localize$10$Fast$Radio$Burst$per$day$ Thanks! Zhonghao Luo (Roy) ● Advisor: Jeff Peterson ● 4th year graduate student ● Lyman Alpha Intensity Mapping using a small aperture telescope with grism spectrotomography Hsiu-Hsien Lin • 4th year physics graduate student Advisor: Jeffrey Peterson • Search Fast Radio Bursts (FRBs) and Pulsars by using Green Bank Telescope and incoming telescopes.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    31 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us