ROTATION: a Review of Useful Theorems Involving Proper Orthogonal Matrices Referenced to Three- Dimensional Physical Space

ROTATION: a Review of Useful Theorems Involving Proper Orthogonal Matrices Referenced to Three- Dimensional Physical Space

Unlimited Release Printed May 9, 2002 ROTATION: A review of useful theorems involving proper orthogonal matrices referenced to three- dimensional physical space. Rebecca M. Brannon† and coauthors to be determined †Computational Physics and Mechanics T Sandia National Laboratories Albuquerque, NM 87185-0820 Abstract Useful and/or little-known theorems involving33× proper orthogonal matrices are reviewed. Orthogonal matrices appear in the transformation of tensor compo- nents from one orthogonal basis to another. The distinction between an orthogonal direction cosine matrix and a rotation operation is discussed. Among the theorems and techniques presented are (1) various ways to characterize a rotation including proper orthogonal tensors, dyadics, Euler angles, axis/angle representations, series expansions, and quaternions; (2) the Euler-Rodrigues formula for converting axis and angle to a rotation tensor; (3) the distinction between rotations and reflections, along with implications for “handedness” of coordinate systems; (4) non-commu- tivity of sequential rotations, (5) eigenvalues and eigenvectors of a rotation; (6) the polar decomposition theorem for expressing a general deformation as a se- quence of shape and volume changes in combination with pure rotations; (7) mix- ing rotations in Eulerian hydrocodes or interpolating rotations in discrete field approximations; (8) Rates of rotation and the difference between spin and vortici- ty, (9) Random rotations for simulating crystal distributions; (10) The principle of material frame indifference (PMFI); and (11) a tensor-analysis presentation of classical rigid body mechanics, including direct notation expressions for momen- tum and energy and the extremely compact direct notation formulation of Euler’s equations (i.e., Newton’s law for rigid bodies). Computer source code is provided for several rotation-related algorithms. A draft version of this document is available at http://www.me.unm.edu/~rmbrann/gobag.htmlDRAF Intentionally Left Blank DRAFTii Introduction ............................................................................................................ 1 Orthogonal basis & coordinate transformations.......................................... 4 Motivational discussion: Principal basis ...................................................... 4 Orthonormal basis transformations............................................................... 5 Alternative direction cosine matrix................................................................ 10 Coordinate transformations........................................................................... 10 Rotation operations.............................................................................................. 12 Example: rotation of an angle α about the X-axis ........................................ 14 Example: rotation of an angle α about the Y-axis. ....................................... 15 Example: rotation of an angle α about the Z-axis. ....................................... 16 Where does that negative sign go? ................................................................ 17 Faster way to write down the matrix of a rotation tensor ............................. 17 Specific example: A 90˚ rotation about the Z-axis......................................... 18 Axis and angle of rotation.................................................................................. 19 T Euler-Rodrigues formula ..................................................................................... 20 Computing the rotation tensor given axis and angle............................................ 22 Example.......................................................................................................... 23 Another example ............................................................................................ 24 Another similar example................................................................................ 24 Numerical example (for testing computer codes) .......................................... 26 Alternative way to construct the rotation tensor............................................ 27 Some properties of the axial tensor ............................................................... 28 Argyris’s form of the Euler-Rodrigues formula............................................. 30 Corollary to the Euler-Rodrigues formula: Existence of a preferred basis ........................................................................ 31 Computing axis and angle given the rotation tensor............................................ 32 Finding the principal rotation angle ............................................................. 32 Finding the principal rotation axis................................................................ 33 Method 1 algorithm for axis and angle of rotation ....................................... 36 Example.......................................................................................................... 37 Another example ............................................................................................ 38 Numerical Example (for testing codes).......................................................... 39 Method 2 algorithm for computing axis and angle........................................ 40 Rotations contrasted with reflections .............................................................. 41 Quaternion representation of a rotation ........................................................ 43 Shoemake’s form [3]...................................................................................... 43 A more structural direct form ........................................................................ 43 Relationship between quaternion and axis/angle forms....................................... 44 Dyad form of an invertible linear operator.................................................... 45 SPECIAL CASE: lab basis............................................................................. 45 SPECIAL CASE: rotation .............................................................................. 46 Sequential Rotations ............................................................................................ 47 Sequential rotations about fixed (laboratory) axes. ............................................. 47 EULER ANGLES: Sequential rotations about “follower” axes.......................... 49 Converting Euler angles to direction cosines................................................ 49 Example: ....................................................................................................... 49 DRAFiii Converting Euler angles to axis and angle.................................................... 50 Series expression for a rotation......................................................................... 51 Spectrum of a rotation......................................................................................... 53 Sanity check ................................................................................................... 54 Polar decomposition............................................................................................ 55 Difficult definition of the deformation gradient .................................................. 55 Intuitive definition of the deformation gradient................................................... 59 Converse problem: interpreting a deformation gradient matrix ................... 61 The Jacobian of the deformation.......................................................................... 62 Invertibility of a deformation............................................................................... 63 Sequential deformations....................................................................................... 63 Matrix analysis version of the polar decomposition theorem.............................. 64 The polar decomposition theorem — a hindsight intuitive introduction............. 65 A more rigorous (classical) presentation of the polar decomposition theorem ... 68 THEOREM:.................................................................................................... 69 PROOF: ......................................................................................................... 69 Working with the inverse gradient................................................................. 72 The *FAST* way to do a polar decomposition in two dimensions..................... 73 “Mixing” or interpolating rotations................................................................... 75 proposal #1: Map and re-compute the polar decomposition................................ 75 proposal #2: Discard the “stretch” part of a mixed rotation. ............................... 76 Proof: ............................................................................................................. 77 proposal #3: mix the pseudo-rotation-vectors...................................................... 78 proposal #4: mix the quaternions......................................................................... 78 Rates of rotation .................................................................................................... 79 The “spin” tensor ................................................................................................. 79 The angular velocity vector ................................................................................. 80 Angular velocity in terms of axis and angle of rotation......................................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    190 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us