Design and Simulation of a 1N Hydrogen Peroxide Monopropellant Thruster

Design and Simulation of a 1N Hydrogen Peroxide Monopropellant Thruster

POLITECNICO DI MILANO School of Industrial and Information Engineering Master of Science in Aeronautical Engineering Design and simulation of a 1N hydrogen peroxide monopropellant thruster Supervisor: Prof. Luciano GALFETTI Master Thesis by: Andrea URAS 898198 Academic Year 2018 - 2019 Sommario L'utilizzo del perossido di idrogeno come monopropellente per applicazioni che richiedono bassi livelli di spinta `etornato ad essere di grande interesse negli ultimi anni. L'obiettivo principale `equello di trovare un sostituto dell'idrazina, altamente tossica e cancerogena, e il perossido di idrogeno ne rappresenta una valida alternativa per via del suo basso impatto ambientale. Questo lavoro di tesi si `eoccupato del design, del dimensionamento e della simulazione di Fluidodinamica Computazionale (CFD) di un monopropellente, alimentato ad acqua ossigenata, capace di produrre 1 Newton di spinta nel vuoto. Il design e il dimensionamento sono stati effettuati con l'ausilio di Chemical Equilib- rium with Applications (CEA), un software sviluppato della NASA utilizzato per appli- cazioni termochimiche. La simulazione CFD, effettuata con il software ANSYS® Fluent, ha riguardato l'analisi dell'ugello e della scia di scarico a diverse altitudini. Ci`oha permesso di valutare l’efficienza dell'ugello confrontando i parametri ideali con quelli ottenuti attraverso le simulazioni, mostrando come il propulsore risulti pi`uefficiente quando opera in regime adattato op- pure sottoespanso. Inoltre, `estato possibile apprezzare come la pressione esterna influenzi la struttura delle scia di scarico dell'ugello, composta da una serie di onde d'urto e di es- pansioni di Prandtl-Meyer. I Abstract The use of hydrogen peroxide as a monopropellant for low-thrust applications had a renewed interest in the last years. The main goal is to find a substitute for hydrazine, highly toxic and cancerogenic, and hydrogen peroxide represents a valid alternative for its low environmental impact. This thesis work concerned about design, sizing and Computational Fluid Dynamics (CFD) simulation of a hydrogen peroxide monopropellant thruster capable to produce 1 Newton of thrust in vacuum. The design and the sizing have been carried with the aid of Chemical Equilibrium with Applications (CEA), a software developed by NASA used for thermochemical applications. The CFD simulation, carried by means of ANSYS® Fluent software, concerned the analysis of the nozzle and the exhaust plume at different altitudes. It has been then pos- sible to evaluate the nozzle efficiency, comparing ideal parameters with the one obtained with the simulations, showing how the engine results to be more efficient in adapted or underexpanded regime. Moreover, it has been possible to observe how the external pres- sure influences the structure of the exhaust plume, composed of a series of oblique shocks and Prandtl-Meyer expansions. II Ringraziamenti Prima di tutto vorrei ringraziare la mia famiglia, la quale mi ha supportato, economica- mente e moralmente, per tutta la durata del mio percorso universitario e mi ha sempre sostenuto nelle scelte fatte. Senza di voi non sarebbe stato possibile tutto questo. Un grazie a quella che `estata per quasi due anni la mia seconda famiglia: Mattia, Fede e Luca. Con voi mi sono sentito a casa e non avrei potuto chiedere compagni di viaggio migliori. Insieme a loro vorrei ringraziare anche Andrea, Marco e Matteo che, nonostante non abbiano partecipato alla spedizione meneghina, fanno comunque parte della grande famiglia made in UniGe di CXVIII. Vorrei poi ringraziare anche gli amici della parentesi francese: Fede, che dopo Genova e Milano ha deciso che non poteva lasciarmi partire da solo per Poitiers, Fede Boni, Irene e, last but not least, Paola, una delle persone migliori che abbia mai conosciuto. Un grazie agli amici di sempre, Viola e Gli Amici del Mietitore, con cui sono cresciuto e che continuano ad essere una felice costante all'interno della mia vita. Grazie anche a Dario e Yuri, con cui ho condiviso gli ultimi mesi a Milano, e a Mario, che mi ha risolto parecchi problemi lasciandomi la sua stanza. Ringrazio il mio relatore, Professor Luciano Galfetti, il quale, nonostante tutti i prob- lemi e gli impegni, ha sempre trovato il modo di dedicarmi del tempo. Ringrazio anche il gi`acitato Mattia, il quale mi ha dato un aiuto non indifferente per quanto riguarda la parte di simulazione fluidodinamica. Ringrazio anche lo staff e gli altri ragazzi di SPLab che, proprio nel momento in cui stavamo iniziando a conoscerci, non ho avuto la possibilit`adi salutare per via della terribile emergenza che ha colpito il nostro paese negli ultimi mesi. III Nomenclature Acronyms ACS Attitude Control System ATO Assisted-Take-Off CEA Chemical Equilibrium with Applications CFD Computational Fluid Dynamics DLR Deutsches Zentrum f¨ur Luft- und Raumfahrt (German Aerospace Center) DNS Direct Numerical Simulation DSGS Dynamic Subgrid-scale ESA European Space Agency FVM Finite Volume Method GEO Geostationary Earth Orbit HTP High Test Peroxide HYPROGEO Hybrid Propulsion System for LEO, MEO and GEO transfer LEO Low Earth Orbit LES Large Eddy Simulation LPT Low pressure tank MEO Medium Earth Orbit MMH Monomethylhydrazine MON Mixed Oxides of Nitrogen NASA National Aeronautics and Space Administration NTO Nitrogen Tetroxide PDE Partial Differential Equation PTFE Polytetrafluoroethylene RACS Roll and Attitude Control System RANS Reynolds Average Navier-Stokes RATO Rocket-Assisted-Take-Off RCS Reaction Control System SME Small and Medium Enterprises UDMH Unsymmetrical Dimethyl Hydrazine Chemical formulas (g) Gaseous (l) Liquid Cr Chrome Cu Copper Fe Iron H2O2 Hydrogen peroxide H2O Water in vapour form H2 Hydrogen IV HO2 Hydroperoxyl radical H Atomic hydrogen Mn Manganese M Third body N2H4 Hydrazine N2O4 Nitrogen tetroxide O2 Oxygen OH Hydroxyl radical O Atomic oxygen Operators (∗)0 Fluctuating component in Reynolds average (∗)00 Fluctuating component in Favre average (∗)i,(∗)j,(∗)α,(∗)β Components along i, j, α, β direction (∗) Reynolds average (c∗) Filtered variable (f∗) Favre average Symbols (qΦ)P source term evaluated at cell centre αconv Convergent angle αdiv Divergent angle ∆Pi Pressure drop of injector ∆Pv Pressure drop of solenoid valve ∆Pcp Pressure drop in the catalyst pack ∆t Time step ∆V Velocity change ∆ Filter width in LES δij Kronecker Delta m_ p Propellant mass flow rate Area ratio Γ Diffusion term γ Ratio of the specific heats κ Reaction rate coefficient λ Thermal conductivity µ Viscosity µT Turbulent viscosity ν Kinematic viscosity νT Kinematic turbulent viscosity νt Subgrid viscosity ! Characteristic frequency of turbulence !r Reaction rate Ωv Volume of integration Φ Reaction scalar φ Bed loading ΦE Reaction scalar evaluated at center of "East" cell Φe Reaction scalar evaluated at "East" frontier of cell ΦP Reaction scalar evaluated at cell center ρ Density V ρe Exit nozzle density ρHTP Density of HTP ρIsp Density specific impulse σiα Stress tensor τ Turbulence time scale τij Subgrid stress term n Normal vector " Dissipation rate of turbulent kinetic energy A Pre-exponential factor Ac Chamber area Ae Nozzle exit area At Throat area At Throat area C Courant number c Chamber speed of sound c∗ Characteristic velocity ce Exit nozzle speed of sound CF Thrust coefficient Cp Specific heat at constant pressure Cs Smagorinsky coefficient Cµ, σk, σ, C1, C2, σ!, C!1, C!2, σΦ Empirical constants CDi Discharge coefficient of the injector CFCFD Thrust coefficient evaluated from CFD CFideal Ideal thrust coefficient d Mass diffusivity Dc Chamber diameter De Exit nozzle diameter Di Injector diameter Dt Throat diameter Ea Activation energy F Thrust G Generic filter g Acceleration of gravity h Enthalpy hS Enthalpy at constant entropy ISPvac Specific impulse in vacuum Isp Specific impulse k Turbulent kinetic energy Kv Flow coefficient of solenoid valve l∗ Length scale l0 Integral scale lk Kolmogorov lenght scale lm Mixing lenght Lconv Convergent length Lcp Catalyst pack length Ldiv Divergent length Me Exit nozzle Mach number mp Propellant mass VI mtot Total mass N Number of mesh points P Nozzle pressure p Pressure Pa Ambient pressure Pc Chamber pressure Pe Nozzle exit pressure Pk Production of turbulent kinetic energy PeCFD Exit nozzle pressure evaluated from CFD Peid Ideal exit nozzle pressure Ppt Propellant tank pressure qc Heat released by reaction QP Volumetric flow rate of the propellant qΦ Source term for scalar Φ R Gas constant Re Reynolds number Re0 Turbulent Reynolds number sm Mesh spacing Sij Strain rate tensor SG Specific gravity T Temperature t Time Tc Chamber temperature Te Exit nozzle temperature Tt Throat temperature Tad Adiabatic temperature tboost Boost time Tij Shear stress term to be solved in LES tres Residence time u Velocity 0 u0 RMS of velocity u∗ Velocity scale uτ Friction velocity V Nozzle velocity Ve Exit nozzle velocity VeCFD Exit nozzle velocity evaluated from CFD Veid Ideal exit nozzle velocity vprod Specific volume of products Vpt Propellant tank volume x, y Spatial coordinates Y Mass fraction y+ Dimensionless wall distance ∆h Enthalpy variation VII Contents 1 Introduction 1 1.1 Motivation . .1 1.2 Goal of the thesis . .1 1.3 Structure of the work . .2 2 State of the art 3 2.1 Hydrogen Peroxide for propulsion applications . .3 2.1.1 Historical background . .3 2.1.2 Current developments . .7 2.2 Theory of rocket propulsion . .8 2.2.1 Fundamental equations . 11 2.2.2 Expansion in convergent-divergent nozzle . 12 2.2.3 Plume structure . 13 2.3 Hydrogen Peroxide safety, handling and storage . 15 2.4 Decomposition of Hydrogen Peroxide . 21 2.4.1 Catalytic decomposition . 22 2.4.2 Thermal decomposition . 23 3 Preliminary design 25 3.1 Computation of operating parameters with NASA CEA code . 25 3.2 Sizing of the thruster . 26 3.3 Feed line design . 28 3.4 Example of research stand for experimental investigation . 30 4 CFD Simulation and modelization 31 4.1 Description and resolution of Navier-Stokes equations . 32 4.1.1 Direct Numerical Simulation (DNS) .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    77 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us