Affective computing and deep learning to perform sentiment analysis NJ Maree orcid.org 0000-0003-0031-9188 Dissertation accepted in partial fulfilment of the requirements for the degree Master of Science in Computer Science at the North-West University Supervisor: Prof L Drevin Co-supervisor: Prof JV du Toit Co-supervisor: Prof HA Kruger Graduation October 2020 24991759 Preface But as for you, be strong and do not give up, for your work will be rewarded. ~ 2 Chronicles 15:7 All the honour and glory to our Heavenly Father without whom none of this would be possible. Thank you for giving me the strength and courage to complete this study. Secondly, thank you to my supervisor, Prof Lynette Drevin, for all the support to ensure that I remain on track with my studies. Also, thank you for always trying to help me find the golden thread to tie my work together. To my co-supervisors, Prof Tiny du Toit and Prof Hennie Kruger, I appreciate your pushing me to not only focus on completing my dissertation, but also to participate in local conferences. Furthermore, thank you for giving me critical and constructive feedback throughout this study. A special thanks to my family who supported and prayed for me throughout my dissertation blues. Thank you for motivating me to pursue this path. Lastly, I would like to extend my appreciation to Dr Isabel Swart for the language editing of the dissertation, and the Telkom Centre of Excellence for providing me with the funds to attend the conferences. i Abstract Companies often rely on feedback from consumers to make strategic decisions. However, respondents often neglect to provide their honest answers due to issues, such as response and social desirability bias. This may be caused by several external factors, such as having difficulty in accurately expressing their feelings about a subject or having an opinion that is not aligned with the norm of society. Nevertheless, the accuracy of the data from such studies is negatively affected, leading to invalid results. Sentiment analysis has provided a means of delving into the true opinions of customers and consumers based on text documents, such as tweets and Facebook posts. However, these texts can often be ambiguous and without emotion. It may, therefore, be beneficial to incorporate affective computing into this process to gain information from facial expressions relating to the customer's opinion. Another useful tool that may ease this process is deep neural networks. In this study, a method for performing sentiment analysis based on a subject's facial expressions is proposed. Affective computing is employed to extract meaningful metrics or features from the faces, which is then given as input to a deep multilayer perceptron neural network to classify the corresponding sentiment. Five models were trained, using different data sets to test the validity of this approach. For the first two models, which served as a pilot study, a data set consisting of videos taken of nine participants’ faces were used for training and testing purposes. The videos were processed to extract 42 affective metrics which served as input for the first model and six emotions as input for the second models. The results obtained from these two models proved that it was better to make use of the 42 metrics instead of merely the six emotions to train a model to perform sentiment analysis. However, the models may have overfitted due to creating the training, validation and test data sets at frame level. A third model was created by following a similar approach, but by increasing the number of participants to 22 and subdividing the data sets into training, validation and test data sets at video level instead of at frame level. To reduce the influence of human bias on the models, an already existing, pre-annotated data set was used to train for the next models. The data set had to be relabelled to only make use of three distinct sentiment classes. Two ways of doing this were identified; thus, two more models were created. The first variation of the data set had a class imbalance leading to a model with somewhat skewed results. For the second variation, the classes were more evenly distributed, which was reflected in the performance of the model. The overall results obtained from the study show that the proposed techniques produce models with accuracies that are comparable to models found in the literature, thereby indicating the usability of the proposed techniques. However, it is suggested that other types of neural ii networks that process time-series data, such as long-short term memory neural networks, may be used to improve the results even further. Keywords: affective computing, deep learning, multilayer perceptron, neural networks, sentiment analysis iii Opsomming Maatskappye vertrou gereeld op terugvoer van verbruikers om strategiese besluite te neem. Respondente versuim egter om hul eerlike antwoorde te lewer weens kwessies soos vooroordeel rakende sosiale wenslikheid. Dit kan veroorsaak word deur 'n aantal eksterne faktore, soos dat hulle probleme ondervind om hul eie gevoelens oor 'n onderwerp akkuraat uit te druk of 'n mening te hê wat nie ooreenstem met die norm van die samelewing nie. Nietemin word die akkuraatheid van die data uit sulke studies negatief beïnvloed, wat tot ongeldige resultate lei. Sentimentontleding bied 'n manier om die werklike opinies van kliënte en verbruikers op grond van teksdokumente, soos tweets en Facebook-inskrywings, te ontdek. Hierdie tekste kan egter dikwels dubbelsinnig en sonder emosie wees. Dit kan dus voordelig wees om affektiewe rekenaarverwerking in hierdie proses te inkorporeer om inligting te verkry uit gesigsuitdrukkings rakende die kliënt se mening. ’n Ander nuttige hulpmiddel wat hierdie proses kan vergemaklik, is diep neurale netwerke. In hierdie studie word 'n metode voorgestel om sentimentontleding op grond van die gesigsuitdrukkings van 'n persoon uit te voer. Affektiewe rekenaarverwerking is gebruik om betekenisvolle statistieke of kenmerke uit die gesigte te onttrek, wat dan gegee word as invoer vir 'n diep multilaag perseptron neurale netwerk om die ooreenstemmende sentiment te klassifiseer. Vyf modelle is ontwikkel met behulp van verskillende datastelle om die geldigheid van hierdie benadering te toets. Vir die eerste twee modelle, wat gedien het as 'n loodsstudie, is 'n datastel wat bestaan het uit video's wat geneem is van nege deelnemers se gesigte, gebruik vir leer- en toetsdoeleindes. Die video's is verwerk om 42 affektiewe statistieke te onttrek wat as invoer gedien het vir die eerste model en ses emosies as invoer vir die tweede model. Die resultate van hierdie twee modelle het gewys dat dit beter was om van die 42 statistieke gebruik te maak in plaas van bloot die ses emosies om 'n model op te lei om sentimentontleding uit te voer. Die modelle kan egter oorleer wees as gevolg van die verdeling van die oefen-, validasie- en toetsdatastelle op datapuntvlak. 'n Derde model is geskep deur 'n soortgelyke benadering te volg, maar die aantal deelnemers is verhoog na 22 en die datastel is onderverdeel in oefen-, validasie- en toetsdatastelle op video- vlak in plaas van datapuntvlak. Om die invloed van menslike vooroordeel op die modelle te verminder, is 'n reeds bestaande voorafgeannoteerde datastel gebruik om die volgende modelle op te lei. Die datastel moes hermerk word om slegs van drie verskillende sentimentklasse gebruik te maak. Twee maniere om dit te doen is egter geïdentifiseer; dus is nog twee modelle geskep. Die eerste variasie van die datastel het 'n klaswanbalans gehad wat daartoe gelei het dat die model skewe resultate het. ’n Beter verspreiding van die klasse van die tweede opstelling is weerspieël in die model se resultate. iv Die algehele resultate wat uit die studie verkry is, toon dat die voorgestelde tegnieke modelle lewer met akkuraatheid wat vergelykbaar is met modelle in die literatuur. Hiermee word die bruikbaarheid van die voorgestelde tegnieke aangedui. Daar word egter voorgestel dat ander soorte neurale netwerke wat tydreeksdata verwerk, soos lang-korttermyngeheue neurale netwerke, gebruik kan word om die resultate nog verder te verbeter. Sleutelwoorde: affektiewe rekenaarverwerking, diep leer, multilaag perseptron, neurale netwerke, sentimentontleding v Conference contributions Excerpts from the study have been presented at conferences as follows: Performing visual sentiment analysis using a deep learning approach N.J. Maree*, L. Drevin, J.V. du Toit, H.A. Kruger (Abstract presented at the 48th ORSSA Annual Conference, Cape Town, South Africa, 16-19 September 2019) Affective computing and deep learning to perform sentiment analysis N.J. Maree*, L. Drevin, J.V. du Toit, H.A. Kruger (Full paper presented at the SATNAC 2019 Conference, Ballito, South Africa, 1-4 September 2019) See Annexure D for the full paper. A Deep Learning Approach to Sentiment Analysis J.V. du Toit*, N.J. Maree, L. Drevin, H.A. Kruger (Abstract presented at the 30th European Conference on Operational Research, Dublin, Ireland, 23-26 June 2019) Affective computing and deep learning to perform sentiment analysis in order to address response bias N.J. Maree*, L. Drevin, J.V. du Toit, H.A. Kruger (Abstract presented at the 47th ORSSA Annual Conference, Pretoria, South Africa, 16-19 September 2018) *Presenting author vi TABLE OF CONTENTS Preface ....................................................................................................................................... i Abstract ...................................................................................................................................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages159 Page
-
File Size-