Appendix: Answers to Exercises

Appendix: Answers to Exercises

Appendix: Answers to Exercises pffiffiffiffiffi 1 1 1. Chapter 1 Exercise 2.4. FðÞ¼x x kf þ ; 1 0 x x À x pffiffiffiffiffi 1 1 1 1 0 SI x kf À ¼ V. 0 x x x Exercise 1.1. Physical law. 1 1 À 0 x2v x2v Exercise 1.2. (a), (b), (f), (g), (i), (j) are quantities. (c), Exercise 2.5. d ¼ a ab ;SI a ab ¼ m. (d), (e), (n) are units. (k) is neither. (l), (m) could be kq À xavab kq À xavab Exercise 2.6. i2 ¼10 mA. quantities if we could devise suitable definitions and = Exercise 2.7. w1 ¼ w0r1 r0. measurements. (h) could be a quantity if we define Exercise 2.8. 14.4 nm. color in terms of frequency. Exercise 2.9. 1 kO. Exercise 1.3. (a)Âà WR (b) J (c) A (d) W (e) s (f) Nm ¼ J. Exercise 2.10. (a) 9:5 O (b) 127 O. 1 t0 0 0 Exercise 1.4. SI L 1 vðt Þdt ¼ SI½¼i A. Exercise 2.11. 49:9kO from the E96 series. Exercise 1.5. (a) No, (b) Yes. Exercise 2.12. (a) 4:3kO Æ 5% (b) 459 kO Æ 0:1%. Exercise 1.6. (a) 10À4 AsÀ1, (b) 104 VsÀ1, (c) 105 VA, Exercise 2.13. Various answers (d) 1010msÀ2. m Exercise 2.14. Because 298 K ¼ 25 C, 298 K is the À1 5 V 5nV m Exercise 1.7. (a) 5mVs ¼ ms ¼ ms , (b) 25kA s¼ reference temperature. À1 À1 À1 25Ams¼25MAns, (c) 100 mJ ms ¼ 100mJms ¼ Exercise 2.15. a10 ¼ 0:0042 K . 100 JsÀ1. Exercise 2.16. 4. Exercise 1.8. (a) No space, milli (b), (e) first m is Exercise 2.17. 10.2. meter, second is milli (c), (d) meter Exercise 2.18. (a) (i) 0:42 O, (ii) 4:08 O; (b) (i) 0:33 O, : O Exercise 1.9. Av ffi 1=b; b determines the gain. (ii) 3 23 Exercise 1.10. x ffi 5:064. Exercise 2.19. Exercise 1.11. (a) 0:495, (b) 5, (c) 1, (d) 3:02, (e) 50. 10 Exercise 1.12. (a) i0, (b) 0. Exercise 1.13. (a) 2:015  103, (b) 16:38  106, 1 (c) 759  10À3, (d) 462  10À6, (e) 4:792  103. 0.1 2. Chapter 2 0.01 = Exercise 2.1.ÂÃI ¼ 2Nqp T where qp is the charge of a À1 proton. SI 2Nqp=T ¼ Cs ¼ A. 0.001 3 4 5 6 7 8 9 Exercise 2.2. h ¼ u2=ð2gÞ;SI½¼u2=ð2gÞ m. 10 10 10 10 10 10 10 f pffiffiffiffiffiffiffiffiffiffiffi hipffiffiffiffiffiffiffiffiffiffiffi (Hz) d d Exercise 2.3. q ¼ d Àf =k;SI d Àf =k ¼ C. 20 (mm) 100 (mm) T.H. Glisson, Introduction to Circuit Analysis and Design, 745 DOI 10.1007/978-90-481-9443-8, # Springer ScienceþBusiness Media B.V. 2011 746 Appendix: Answers to Exercises 3. Chapter 3 Exercise 4.2. 2 2 R1ð2R0 þ 4R0R2 þ R2 Þ Req ¼ 2 2 . 2R0 þ 4R0R2 þ R2 þ 2R1ðÞR0 þ R2 Exercise 3.1. vbd ¼ 15 V; vcd ¼ 5V; vda ¼20 V; v1 ¼5V; vb ¼ 15V. Exercise 4.3. a ¼2; b ¼ 19=5; g ¼ 6=5; d ¼1. Exercise 3.2. (a) The series connection of elements Exercise 4.4. 8:77 O. 1 and 2 is in parallel with the series connection of R0R1R2 elements 3 and 4. (b) The parallel connection of Exercise 4.5. (a) vx ¼ ðÞi0 À i1 R ðÞþR þ R R R elements 1, 2, and 3 is in series with element 4. 1 0 2 0 2 R1R2 : % Exercise 3.3. vab ¼ v1 À v2 À v3, vac ¼ v1 À v3, vbd ¼ (b) vx ffi i1 (c) 1 06 . R1 þ R2 v þ v . 2 3 : : : Exercise 3.4. No. i ¼ i þi so the sources aren’t Exercise 4.6. (a) RT ¼ 0 91R, vT ¼ 0 91Ri0À 0 48v0 2 1 3 : : = : independent. (b) RN ¼ 0 91R, iN ¼ i0 À 0 53ðÞv0 R RnRm ; R23I0 ; Exercise 3.5. Let Rnm ¼ I1 ¼ 4v1 þ 12Ri0 12 Rn þ Rm R1 þ R23 Exercise 4.7. vT ¼ v0 þ , RT ¼ R: R13I0 R12I0 7 7 I2 ¼ ; I3 ¼ . R2 þ R13 R12 þ R3 7v0 þ 4v1 12 Exercise 4.8. iN ¼ i0 þ ; RN ¼ R. R1 12R 7 Exercise 3.6. v1 ¼ v0. R1 þ R2 ðÞR2 À R1 v2i1 R2v2 À R1R2i1 Exercise 3.7. Exercise 4.9. vT ¼ , RT ¼ . R2i1 À v2 R2i1 À v2 R3v2 ÀðÞR2 þR3 v1 R2 R3v1 ÀðÞR1 þR3 v2 i1 ¼ ; i3 ¼ . R R þR R þR R R R R þR R þR R R2ðÞ3R1 þ 2R2 1 2 1 3 2 3 3 1 2 1 3 2 3 Exercise 4.10. RN ¼ . R1 þ R2 Exercise 3.8. vac ffi0:015v0; vbc ffi 0:463v0. va va À ðÞvd À v2 À v1 Exercise 3.9.ðÞÀ a i1 þ þ ¼ 0; R1 R2 v v À v v À v À v À v 5. Chapter 5 ðÞd d þ d 2 þ d 2 1 a ¼ 0. R4 R3 R2 v À R i v v þ v Exercise 3.10. ðbÞ b 1 1 þ c þ c 2 ¼ 0; Exercise 5.1. Answer given in problem statement. R1 þ R2 R3 R4 vc vc þ v2 vb À R1i1 Exercise 5.2. ðcÞ þ þ ¼ 0. R3 R4 R1 þ R2 2 2 Exercise 3.11. Choose node c as reference node. pR ¼ð1=9RÞðÞV0 À 2RI0 cos ðÞo0 t 0 R R R i i v 1 2 3ðÞþ1 þ 2 1 2 2 vb ¼ . p2R ¼ð2=9RÞðV0 þ RI0Þ cos ðÞo0 t 0 R1R2 þ R1R3 þ R2R3 Exercise 3.12. No. v3 ¼ v1þv2 so the sources aren’t 2 2 pi ¼ð2=3ÞðV0I0 þ RI0 Þ cos ðÞo0 t 0 independent. R R v R v ðÞ2 þ 3 a À 3 b 2 2 Exercise 3.13. i1 ¼ . pv ¼ð1=3RÞðV0 À 2RI0V0Þ cos ðÞo0 t R1R2 þ R1R3 þ R2R3 Exercise 3.14. p > 0 and p > 0 so the resistors consume energy. R v R R R R i R 2R B 0 þ ðÞ2 3 À 2 4 0 ; < i1 ¼ 2 pi 0, so the current source produces energy. If RARB À R2 2 V0 À2RI0V0 > 0, then Pv < 0 and the voltage source R2v0 þ RAðÞR3 À 5R4 i0 2 ; produces energy. If V0 À2RI0V0 < 0, then pv > 0 and i2 ¼ 2 RARB À R2 the voltage source consumes energy. RA ¼ R1 þ R2; RB ¼ R2 þ R3 þ R4: Exercise 5.3. P ¼ 25 mW; V ¼ 5V; w ¼ 50 mJ. Exercise 5.4. P ffi 547 mW: Exercise 3.15. Answer given in problem statement. Exercise 5.5. Answer given in problem statement. Exercise 5.6. 4. Chapter 4 P y p^ ¼ 0 ½¼1 þ cosðÞy P cos2 2 0 2 3 1 3v0 Exercise 4.1. ia ¼ þ va þ À i0. Exercise 5.7. Answer given in problem statement. 2R0 R1 2R0 Appendix: Answers to Exercises 747 Exercise 5.8. 6. Chapter 6 RS V + I R S – S S Exercise 6.1. Rin ¼ R1kðÞR2 þ R3kRL ¼ R1ðÞR2R3 þ R2RL þ R3RL VS VS = 12.6 V, RS = 0.1 Ω IS == 126 A, RS = 0.1 Ω R1R3 þ R1RL þ R2R3 þ R2RL þ R3RL RS 2 2 Rout ¼ R3kðÞR2 þ R1kRS ¼ VS IS RS P = = ≅ 397 W; I = I = 126 A L max R L max S R ðÞR R þ R R þ R R 4 S 4 3 2 1 2 S 1 S , R1R3 þ R1RS þ R2R1 þ R2RS þ R3RS Exercise 5.9. There are two solutions: (b) and (c) same as (a). 179O 189V 1:06A Exercise 6.2. g ¼ m=R. R ffi ; V ffi ) I ffi . T 0:557O T 10:6V N 19:0A RoRL RiRS Exercise 5.10. 1=2. Exercise 6.3. vab ¼ gis. Ro þ RL Ri þ RS Exercise 5.11. 1 þ cosðÞy1 À y2 . R1 Exercise 5.12. Let x ðÞ¼t x ðÞ¼t cosðÞ)o t Exercise 6.4. Rin ¼ . 1 2 1 þ b 2 1 ; x1x2 ¼ cos ðÞ¼o t 2 x1 x2 ¼ cosðÞo t cosðÞ¼o t 0. RoRL RiRS ; Exercise 5.13. 1. Exercise 6.5. vT ¼ gis 2 2 Ro þ RL Ri þ RS I0R I0R Exercise 5.14. ptðÞ¼ þ cosð4pftÞ; p^¼ 1:5kW; RoRL 2 2 RT ¼ . P ¼ 750W. Ro þ RL Exercise 5.15. Exercise 6.6. R2 R2 2; 2; 2 ðÞ7m À 1 v À ðÞ1 þ 4m v þ ðÞ11b À 4m À 1 Ri PR1 ¼ ðÞi0 Ài1 PR2 ¼ ðÞi0 Ài1 ðÞi0 Ài1 1 2 1 R1 R2 vout ¼ . Âà m À 19 1 2 2 ¼ I0 þI1 À2I0I1 cosðÞy 2 Exercise 6.7. m1 ¼ 0. I2R I I R I2R I I R Exercise 6.8. m ¼ gR0. P ¼ 0 þ 0 1 cosðÞy ; P ¼ 1 þ 0 1 cosðÞy : i0 2 2 i1 2 2 Exercise 6.9. Âà Exercise 5.16. ðaÞ 25 mA ðbÞ 5VðcÞ p10ffiffi V ðdÞ p10ffiffi mA. 2 2 Ri Rf ðÞþRL þ Ro RLRo Rin ¼ ; Exercise 5.17. Rf ðÞþRL þ Ro RLRo þ Ri½Ro þ RLðÞm þ 1 2 2 ÀÁ Âà V0 þ ðÞI0R ; 1 2 ; PR ¼ Pi ¼ V0I0 þ I0R Ro Rf ðÞþRi þ RS RiRS 4R 4 R ¼ ÀÁ : 2 out V À V I R Rf þ Ro ðÞþRi þ RS ðÞm þ 1 RiRS P ¼ 0 0 0 ; P þ P þ P ¼ 0: v 4R R i v À7% Exercise 5.18.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    23 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us