Chapter 5 LAPACK and the BLAS

Chapter 5 LAPACK and the BLAS

Research Collection Educational Material Software for numerical linear algebra Author(s): Arbenz, Peter; Chinellato, Oscar; Gutknecht, Martin H.; Sala, M. Publication Date: 2006 Permanent Link: https://doi.org/10.3929/ethz-a-005195943 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Contents 1 Introduction 1 I Dense Linear Algebra 3 2 Basics 4 2.1 Notation . 4 2.2 Statement of the problem . 5 2.3 Similarity transformations . 7 2.4 Schur decomposition . 8 2.5 The real Schur decomposition . 9 2.6 Hermitian matrices . 10 2.7 Cholesky factorization . 13 2.8 The singular value decomposition (SVD)F . 14 3 The QR Algorithm 17 3.1 The basic QR algorithm . 17 3.1.1 Numerical experiments . 18 3.2 The Hessenberg QR algorithm . 20 3.2.1 A numerical experiment . 22 3.2.2 Complexity . 23 3.3 The Householder reduction to Hessenberg form . 24 3.3.1 Householder reflectors . 24 3.3.2 Reduction to Hessenberg form . 24 3.4 Improving the convergence of the QR algorithms . 26 3.4.1 A numerical example . 27 3.4.2 QR algorithm with shifts . 28 3.4.3 A numerical example . 29 3.5 The double shift QR algorithm . 30 3.5.1 A numerical example . 33 3.5.2 The complexity . 34 3.6 The symmetric tridiagonal QR algorithm . 35 3.6.1 Reduction to tridiagonal form . 35 3.6.2 The tridiagonal QR algorithm . 36 3.7 Summary . 36 4 Cuppen’s Divide and Conquer Algorithm 40 4.1 The divide and conquer idea . 40 4.2 Partitioning the tridiagonal matrix . 41 4.3 Solving the small systems . 41 4.4 Deflation . 42 4.4.1 Numerical examples . 43 ii 4.5 The eigenvalue problem for D + ρvvT . 44 4.6 Solving the secular equation . 47 4.7 A first algorithm . 48 4.7.1 A numerical example . 48 4.8 The algorithm of Gu and Eisenstat . 51 4.8.1 A numerical example [continued] . 52 5 LAPACK and the BLAS 57 5.1 LAPACK . 57 5.2 BLAS . 58 5.2.1 Typical performance numbers for the BLAS . 58 5.3 Blocking . 59 5.4 LAPACK solvers for the symmetric eigenproblems . 61 5.5 Generalized Symmetric Definite Eigenproblems (GSEP) . 63 5.6 An example of a LAPACK routines . 63 II Sparse Linear Algebra 71 6 Finite Element Discretisations of Elliptic PDEs 72 6.1 Model Problem . 72 6.1.1 Derivation of a Weak Form . 73 6.1.2 Of Meshes, Element Functions and Discrete Operators . 74 6.1.3 Assembling the Parts . 77 6.2 A MATLAB implementation . 78 6.3 The Solution — Assessing Correctness . 81 7 Storage Schemes for Sparse Matrices 86 7.1 Compressed Sparse Row (CSR), Compressed Sparse Column (CSC) . 86 7.2 Modified Sparse Row (MSR), Modified Sparse Column (MSC) . 88 7.3 Coordinate Format (AIJ) . 88 7.4 Linked List Format . 89 7.5 H –MatricesF . 89 8 Reorderings and Sparse Direct Solvers 92 8.1 Fill-in Reducing (and other) Reorderings . 92 8.2 Direct Solvers . 94 8.3 Available Software . 94 9 Iterative Solvers 98 9.1 Fixed Point and Jacobi Iteration . 98 9.2 Iterations Based on Matrix Splittings . 101 9.3 Krylov Subspaces and Krylov Space Solvers . 104 9.4 Chebyshev IterationF . 108 9.5 Preconditioning . 112 9.6 The Conjugate Gradient Method . 113 9.6.1 Energy Norm Minimization . 113 9.6.2 Steepest Descent . 114 9.6.3 Conjugate Direction Methods . 115 9.6.4 The Conjugate Gradient (CG) method . 117 9.6.5 The Conjugate Residual (CR) Method . 122 9.6.6 A Bound for the Convergence . 124 9.6.7 Preconditioned CG Algorithms . 124 9.6.8 CG and CR for Complex SystemsF . 126 iii 9.6.9 CG for Least Squares ProblemsF . 126 9.7 The Symmetric Lanczos ProcessF . 129 9.7.1 The Lanczos Process and Its Relation to the CG MethodF . 129 9.7.2 Eigenvalue Computations With the Symmetric Lanczos ProcessF . 133 9.7.3 Solving the System in Coordinate SpaceF . 134 9.7.4 Further Topics Related to the CG Method and the Lanczos ProcessF . 137 9.8 Solving the System in Coordinate Space . 137 9.8.1 The Arnoldi Process . 137 9.8.2 The Transformation to Coordinate Space . 141 9.8.3 GMRES . 142 9.8.4 MINRES . 145 9.8.5 FOMF . 147 F 9.8.6 SYMMLQ . 147 10 Preconditioning 153 10.1 Preconditioning based on classical matrix splittings . 154 10.2 Incomplete LU and Cholesky factorizations . 155 10.3 Polynomial preconditioning . 157 10.4 Inner-outer iteration . 157 10.5 Sparse Approximate Inverse Preconditioners (SPAI)F . 157 10.6 Domain Decomposition Preconditioners . 158 10.6.1 One-level Schwarz Preconditioners . 160 10.6.2 Two-level Schwarz Preconditioners . 162 10.7 Multigrid Preconditioners . 164 11 Finite Difference and Finite Element Discretisations of Eigenvalue ProblemsF 170 11.1 What makes eigenvalues interesting? . ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    233 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us