
Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 12-2018 Thermal Management of Satellite Electronics via Gallium Phase Change Heat Sink Devices Brian O. Palmer Follow this and additional works at: https://scholar.afit.edu/etd Part of the Structures and Materials Commons Recommended Citation Palmer, Brian O., "Thermal Management of Satellite Electronics via Gallium Phase Change Heat Sink Devices" (2018). Theses and Dissertations. 1945. https://scholar.afit.edu/etd/1945 This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. THERMAL MANAGEMENT OF SATELLITE ELECTRONICS VIA GALLIUM PHASE CHANGE HEAT SINK DEVICES THESIS Brian O. Palmer, Major, USAF AFIT-ENY-MS-18-D-038 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the United States Government. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENY-MS-18-D-038 THERMAL MANAGEMENT OF SATELLITE ELECTRONICS VIA GALLIUM PHASE CHANGE HEAT SINK DEVICES THESIS Presented to the Faculty Department of Aeronautics and Astronautics Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree of Master of Science in Astronautical Engineering Brian O. Palmer, BS, MBA Major, USAF December 2018 DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENY-MS-18-D-038 THERMAL MANAGEMENT OF SATELLITE ELECTRONICS VIA GALLIUM PHASE CHANGE HEAT SINK DEVICES Brian O. Palmer, BS, MBA Major, USAF Committee Membership: Dr. Carl R. Hartsfield, PhD Chair Lt Col James L. Rutledge, PhD Member Major Ryan P. O’Hara, PhD Member AFIT-ENY-MS-18-D-038 Abstract The purpose of this research was to determine the effectiveness and feasibility of additively manufactured heat sinks using gallium as a phase change material in the thermal management of satellite electronics. A design was created based on the footprint of an Astronautical Development, LLC Lithium 1 UHF radio and six heat sinks were additively manufactured; two each of stainless steel 316, Inconel 718, and ULTEM 9085. Each heat sink was filled with gallium for testing purposes. Models were created to simulate the behavior of the heat transfer and phase change processes occurring within the heat sink. Additionally, laboratory data was gathered on the actual processes occurring. Testing was carried out in a thermal vacuum chamber with the use of film heaters that were attached to the heat sink to simulate a radio in transmitting mode while a satellite is in contact with a ground station. Finally, temperature profiles of the laboratory data were created to gain insight into the characteristics of the phase change process and its effectiveness in thermal management of satellite electronics. iv Acknowledgments I would like to express my sincere appreciation to my faculty advisor, Dr. Carl Hartsfield, for his guidance and support throughout the course of this thesis effort. The insight and experience was certainly appreciated. Brian O. Palmer v Table of Contents Page Abstract .............................................................................................................................. iv Table of Contents ............................................................................................................... vi List of Figures .................................................................................................................... ix List of Tables ..................................................................................................................... xi Nomenclature .................................................................................................................... xii I. Introduction .....................................................................................................................1 1.1 General Issue .........................................................................................................1 1.2 Problem Statement .................................................................................................2 1.3 Research Objectives/Questions/Hypotheses .........................................................2 1.4 Methodology, Assumptions, and Equipment ........................................................2 1.5 Preview ..................................................................................................................4 II. Literature Review ............................................................................................................5 2.1 Chapter Overview ..................................................................................................5 2.2 Heat Sink Operation ..............................................................................................5 2.3 Advantages of PCM Heat Sinks ............................................................................7 2.4 History of PCM Devices .......................................................................................9 2.5 Organic and Inorganic Phase Change Materials ...................................................9 2.6 Thermal Conductivity Enhancers ........................................................................10 2.7 Metallic Phase Change Materials ........................................................................12 2.8 Gallium Peculiarities ...........................................................................................15 2.9 Additive Manufacturing ......................................................................................16 2.10 Heat Transfer .....................................................................................................17 vi 2.11 Summary ............................................................................................................20 III. Methodology ................................................................................................................21 3.1 Chapter Overview ................................................................................................21 3.2 Problem Review ..................................................................................................21 3.3 PCM Heat Sink Design .......................................................................................22 3.4 Modeling and Simulation ....................................................................................24 3.5 Laboratory Testing ..............................................................................................35 3.6 Month-Long Orbit Simulation .............................................................................43 3.7 Summary..............................................................................................................43 IV. Analysis and Results ....................................................................................................45 4.1 Chapter Overview ................................................................................................45 4.2 Test article Masses ..............................................................................................45 4.3 Laboratory Data ...................................................................................................46 4.4 Month-Long Orbit Simulation Results ................................................................64 4.5 Investigative Questions Answered ......................................................................65 4.6 Summary..............................................................................................................66 V. Conclusions and Recommendations ............................................................................67 5.1 Chapter Overview ................................................................................................67 5.2 Conclusions of Research .....................................................................................67 5.3 Impact of Research ..............................................................................................68 5.4 Recommendations for Future Research ...............................................................68 5.5 Summary..............................................................................................................70 Appendix A: MATLAB Code ..........................................................................................72 vii Code for Heat Equation Model ...................................................................................72 Code for Lumped Capacitance Model ........................................................................78 Appendix B: Month-Long Orbit Simulation Results ........................................................80 Appendix C: Equipment and Materials Used ...................................................................84 Bibliography ......................................................................................................................85
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages103 Page
-
File Size-