Memristors ISL1- 1 the Perfect Storm in Nonlinear Circuit Theory ! ISL1- 2 Esaki Diode

Memristors ISL1- 1 the Perfect Storm in Nonlinear Circuit Theory ! ISL1- 2 Esaki Diode

10 Things You Didn’t Know About Memristors ISL1- 1 The Perfect Storm in Nonlinear Circuit Theory ! ISL1- 2 Esaki Diode I Leo Esaki Nobel Prize in Physics, 1973 L. Esaki New Phenomenon in Narrow Germanium p-n junctions Physics review 109(2):603, 1958 ISL1- 3 Simplest Tunnel Diode Circuit I P2 (I2, V2) + I I2 I1 P1 (I1, V1) L = 1 V - P* Impasse I* point dI V 0 V V* V V dt 1 2 Solution does NOT exist beyond P* ! ISL1- 4 Two Points of View ! For mathematician, no solution is a Perfectly valid solution For everybody else, no solution means nonsence. ISL1- 5 Crisis in Circuit Theory Pre-1970 Definitions of the 3 Basic Circuit Elements Capacitors, Resistors, and Inductors give wrong circuit solutions when the elements are time-varying or nonlinear ISL1- 6 3 Basic Circuit Elements dv(t) 1745 i(t) C dt 1827 v(t) R i(t) di(t) 1831 v(t) L dt ISL1- 7 To Recover from the perfect storm Capacitors, Resistors, Inductors must be redefined via an AXIOMATIC APPROACH ISL1- 8 All Results Derived from An Axiomatic Approach are Timeless ! ISL1- 9 Four Basic Circuit Variables i(t) + v(t) voltage current v(t) i(t) t q()() t i d t ≜ ()()t≜ v d charge flux q(t) (t) ISL1- 10 GEDANKEN i + PROBING v B _ CIRCUITS - ISL1-11 Linear resistor: v = Ri or i = Gv Nonlinear Resistor R R = Resistance, G = Conductance1 R slope = R2 slope = G1 Q1 R1 1 R3 1 Q2 slope = G2 0 G3 1 Current-controlled Resistor: v vˆ() i Voltage-controlled Resistor: i iˆ() v Ri = small-signal resistance at Qi Gi = small-signal conductance at Qi ISL1- 12 current, Ampere A voltage, Volt V RESISTOR v i R(v,i)=0 R q φ charge, Coulomb C flux, Weber Wb ISL1- 13 current, Ampere A voltage, Volt V RESISTOR v i R(v,i)=0 R 0 )= i L , ( L INDUCTOR q φ charge, Coulomb C flux, Weber Wb ISL1- 14 current, Ampere A voltage, Volt V RESISTOR v i R(v,i)=0 R C( 0 q,v )= i )= C L , 0 ( L INDUCTOR CAPACITOR q φ charge, Coulomb C flux, Weber Wb ISL1- 15 4 Basic Circuit Elements current, Ampere A voltage, Volt V RESISTOR v i R(v,i)=0 R C( 0 q,v )= i )= C L , 0 ( L INDUCTOR CAPACITOR ? Missing Link q φ charge, Coulomb C flux, Weber Wb ISL1- 16 4 Basic Circuit Elements current, Ampere A voltage, Volt V RESISTOR v i R(v,i)=0 R C( 0 q,v )= i )= C L , 0 ( L INDUCTOR CAPACITOR M M ( , q)= 0 q φ charge, Coulomb C MEMRISTOR flux, Weber Wb ISL1- 17 Memristor tangent d df() q dq v = f(q) slope = M(q) dt dq dt q i 0 M(q) = f(q) v = M(q) i M(q) is called the Memristance. ISL1- 18 A Fourth Basic Element Called the Memristor was postulated in 1971 Leon O. Chua Memristor : The missing circuit element IEEE Transactions on Circuit Theory, vol.18, no.5, p.507-519, 1971. and found in 2008 D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams The Missing Memristor Found Nature, vol.453, p.80-83,2008. ISL1- 19 HP Memristor D Pt -1 TiO2 TiO2-x Pt - 2 i v + v = M (q) i Memristance vOR N M(qq ) ROFF 1 - D2 where D is the device thickness (can be scaled to less than 2 nano meters) ROFF, RON, v are device parameters ISL1-20 Memristor is defined by a State - Dependent Ohm’s Law ISL1- 21 1973 Discovers Nobel Super- Prize conducting Josephson in tunneling Physics junctions B. D. Josephson ISL1- 22 Brian Josephson 1973 Nobel Prize in Physics: JOSEPHSON JUNCTION CIRCUIT MODEL i33 Asin i4[ B cos 4 ] v 4 i + i1 i2 i3 i4 v ? _ 2-terminal element to model the Josephson Pair-tunneling current 2-teminal element to model the Quasi-Particle Pair interference current ISL1- 23 qB sin iA33 sin 44 ISL1- 24 Why is the Memristor Non-Volatile ? q v (t) + i s P qP E +_ v t _ 0 = E 0 t0 t0 + P Assume t (t ) ()()t 0 v d 0 0 E t0 = 0 P = t 0 t0 t0 + ISL1- 25 Example: A two-state Charge-Controlled Memristor Charge - controlled i = q , Weber - q curve : = (q) 1 + 10 10 low-resistance Charge- (high-conductance) state controlled high-resistance (low-conductance) state v = memristor q, 0 1 = (q) Coulomb _ M(q), Ω 10 Memristance 10 Ω d 1 Mq()≜ q, dq 1 0.1 Ω 0 Coulomb ISL1- 26 Non-volatile memories are estimated to be a 400 billion dollar Industry by 2020 ! Imagine a PC which turns on instantly ! ISL1- 27 Why not Flash ? • Can not be economically scaled below 10 nanometers • Poor Retention time: Fails after switching between 10,000 and 100,000 times • Low Speed • Power Hungry • They lose about 20 percent of information for decade. ISL1- 28 Non-Volatile Nano Memristors will eventually replace the following conventional computer memories •Flash Memories •DRAMs •Hard Drives ISL1- 29 I = ? q + V = 6 volts - φ 0 q = φ3 What happen when you connect a Memristor across a battery ? ISL1- 30 ISL1- 31 q to infinity i = ? i for E > 0 +v = E volts- 3E(φ(0))2 φ t 0 0 q = φ3 3E(φ(0)+6t)2 t (td ) (0)v ( ) 0 Shocking Truth ! i (0) Et q (t ) (0) E t3 The DC V-I + curve consists dtq () 2 I E i (t ) 3 (0) E t ( E ) of only one v dt point V 3E (0) E t 2 - (V, I) = (0, 0). 0 as t ISL1- 32 The Ideal Memristor does not have a DC V-I Curve ! ISL1- 33 Standing Assumption All state variables xi in the state equation x = f ()x , v (Voltage-Controlled or Memristor) (Current-Controlled x = f ()x , i Memristor) have infinite range: -∞ < x < ∞ i ISL1- 34 An 8 nm Memristor From: S. Pi, P. Lin, Q. Xia,“Cross point arrays of 8 nm × 8 nm memristive devices fabricated with nano imprint lithography”, J. Vac. Sci. Technol. B 31, 06FA02-1 - 06FA02-6, 2013 ISL1- 35 Memristor made from A single Layer of the Molecule MoS2 100 ii A) μ I( 0 From: iv i V. K. Sangwan, D. Jariwala, I. S. Kim, K. S. Chen, T. J. Marks, L. J. Lauhon, iii M. C. Hersam, “Gate-tunable memristive phenomena mediated by -100 grain boundaries in single-layer MoS2”, Nature Nanotechnology 10, p. 403-406, -20 0 20 2015 V(V) ISL1- 36 How Do You Know Your Device is a Memristor ? Since hp’s 2008 publication in Nature of a nano-scale memristor, numerous other memristors have been published. Less than 5 such publications have an equation describing their device ! How then can they claim their device are memristors ? ISL1- 37 Experimental Definition of the i Memristor + v ̶ If it’s Pinched, i, (mA) 0.15 0.075 it’s a v, (V) 0 -0.075 Memristor -0.15 ISL1- 38 Genealogy of Memristors Extended Generic Ideal Ideal Memristor Memristor Generic Memristor Memristor Voltage – Controlled Voltage – Controlled Voltage – Controlled Voltage – Controlled i G(,)x vv i G()x v i G()φ v G(x , 0) dx dx ˆ dφ g(,)x v g()x v v dt dt dt ISL1- 39 The Memristor Universe EXTENDED MEMRISTOR v R(,)x ii dx f (,)x i R(x , 0) dt GENERIC MEMRISTOR v R()x i IDEAL GENERIC MEMRISTOR dx fˆ ()x i dt IDEAL MEMRISTOR dq v R()q i i dt ISL1- 40 Every Ideal Memristor spawns an Infinite family of Equivalent Generic Memristor Siblings ISL1-41 Ideal Memristor Cousins All Generic and Extended JournalMemristors of Applied Physics 68, 6535 (1990); doi: 10.1063are/1.346832 Qualitatively Identical to Ideal memristors ISL1- 42 All Non-volatile Memories based on Resistance Switchings are Memristors ISL1- 43 Following non-volatile memory devices are memristors • Re RAMS • Phase Change Memories • MRAMS • Ferro-Electric Non-volatile Memories • Atomic Switch ISL1- 44 Examples of Non-Volatile Memristors • RRAM Memristors (metal oxides Tio2, TaOx, etc.) • Polymeric Memristors (conducting polymers) • Ferroelectric Memristors (Ferroelectric films) • Manganite Memristors (Perovskite manganite) • Spintronic Memristors (spin-transfer torque magnetic layers) ISL1- 45 Cat' s Whisker from the First Radios are Memristors Bistable memristive behavior Input current versus voltage across device. Philmore cat’s whisker in contact with a Galena crystal. One clearly observes pinched hysteresis loop for cat’s whisker. ISL1- 46 Material Views Advanced Functional Materials www.MaterialViews.com 2012, 22, 4493-4499 www.afm-journal.de A Natural Silk Fibroin Protein-Based Transparent Bio-Memristor Mrinal K. Hota, Milan K. Bera, Banani Kundu, Subhas C. Kundu, and Chinmay K. Maiti Cocoons of Cut pieces of Degumming: removal Degummed fibre mulberry silkworm cocoons of protein sericin of protein fibroin Fibroin solution Thorough dialysis of fibroin Dissolved fibre Device Structure (conc. 2% w/v) solution to remove excess LiBr in 9.3 M LiBr ISL1- 47 Pinched hysteresis loop in the i – v plane resembles a seagull-wing in the log | i | - v plane ISL1- 48 ISL1- 49 Scientific Reports 5 Article Number: 10022 www.nature.com/scientificreports Published: 7 May 2015 Nonvolatile Bio-Memristor Fabricated with Egg Albumen Film Ying-Chih Chen, Hsin-Chieh Yu, Chun-Yuan Huang, Wen-Lin Chung, San-Lein Wu & Yan-Kuin Su Egg White Solid I–V characteristics of the thermal-baked and dry-cured albumen devices ISL1-50 The Quest for building nano-scale solid state non-volatile memories dates back from 1939 ISL1- 51 Trans.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    151 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us