
Overview Analogy Quasar/Microquasar Population in our galaxy Jets Accretion disk Rotating Black Holes Conclusion Microquasars Mierk Schwabe TU M¨unchen MPE Garching 17 Dec 2004 Mierk Schwabe TU M¨unchen,MPE Garching Microquasars 1 of 46 Overview Analogy Quasar/Microquasar Discovery Population in our galaxy Definition Jets Constituents Accretion disk Spectrum Rotating Black Holes The Jets Conclusion A ’microquasar’ in the galaxy GRS1915+105: strongly variable X-ray source (1992) then: superluminal radio jets! [Mirabel, Rodriguez, Nature 1992] Mierk Schwabe TU M¨unchen,MPE Garching Microquasars 2 of 46 Overview Analogy Quasar/Microquasar Discovery Population in our galaxy Definition Jets Constituents Accretion disk Spectrum Rotating Black Holes The Jets Conclusion What is a ”microquasar”? X-ray binary with relativistic jets ... in our galaxy Artist’s impression [Ribo 2004] Mierk Schwabe TU M¨unchen,MPE Garching Microquasars 3 of 46 Overview Analogy Quasar/Microquasar Discovery Population in our galaxy Definition Jets Constituents Accretion disk Spectrum Rotating Black Holes The Jets Conclusion Constituents compact object: black hole (BH) or neutron star (NS) companion: heavy (HMXB) or low-mass (LMXB) Mierk Schwabe TU M¨unchen,MPE Garching Microquasars 4 of 46 Overview Analogy Quasar/Microquasar Discovery Population in our galaxy Definition Jets Constituents Accretion disk Spectrum Rotating Black Holes The Jets Conclusion Emission from Microquasars [Fender, R.] Mierk Schwabe TU M¨unchen,MPE Garching Microquasars 5 of 46 Overview Analogy Quasar/Microquasar Discovery Population in our galaxy Definition Jets Constituents Accretion disk Spectrum Rotating Black Holes The Jets Conclusion Emission from Jets non-thermal, synchrotron SS433: emission lines → barionic nature [Marshall et al. 2002] direct follow-up of jet motion sometimes possible: VLBA observation of SS433 at 1.5 GHz over 42 days [Rupen 2004] Mierk Schwabe TU M¨unchen,MPE Garching Microquasars 6 of 46 Overview Analogy Quasar/Microquasar Population in our galaxy Quasars Jets Orders of magnitude Accretion disk An analogy over eight orders of magnitude Rotating Black Holes Conclusion Quasars galaxy with extreme optical and radio luminosity characteristic activity: AGN supermassive black hole M ∼ 107 − 109MJ bipolar jets of relativistic particles: synchrotron radiation Jet from Galaxy M87 [http://hubblesite.org] Mierk Schwabe TU M¨unchen,MPE Garching Microquasars 7 of 46 Overview Analogy Quasar/Microquasar Population in our galaxy Quasars Jets Orders of magnitude Accretion disk An analogy over eight orders of magnitude Rotating Black Holes Conclusion Luminosities and Accretion rates fraction of Ekin will be radiated away [Parades et al. 2003] accretion of matter efficient source of energy: 1 L =∼ Mc˙ 2 2 quasars microquasars luminosity ∼ 1047erg s−1 ∼ 1037erg s−1 accretion rates ∼ 10MJ yr −1 ∼ 10−9MJ yr −1 Mierk Schwabe TU M¨unchen,MPE Garching Microquasars 8 of 46 Overview Analogy Quasar/Microquasar Population in our galaxy Quasars Jets Orders of magnitude Accretion disk An analogy over eight orders of magnitude Rotating Black Holes Conclusion Temperatures heating of accretion disk due to loss of angular momentum black body temperature in last stable orbit: 1/4 M˙ T ≈ 1.4 · 107 M with T in K, M in MJ and M˙ in Eddington rates [Greiner 2000]. quasars microquasars temperature ∼ 105K ∼ 107K emission domain optical, UV X-ray Mierk Schwabe TU M¨unchen,MPE Garching Microquasars 9 of 46 Overview Analogy Quasar/Microquasar Population in our galaxy Quasars Jets Orders of magnitude Accretion disk An analogy over eight orders of magnitude Rotating Black Holes Conclusion Time scales Schwarzschild radius as characteristic dimension time scale: R τ ∼ S ∝ M c black hole mass 6 - 8 magnitudes smaller in microquasars → much faster few minutes observation of microquasar ≡ decades or millennia for quasar Mierk Schwabe TU M¨unchen,MPE Garching Microquasars 10 of 46 Overview Analogy Quasar/Microquasar Population in our galaxy Quasars Jets Orders of magnitude Accretion disk An analogy over eight orders of magnitude Rotating Black Holes Conclusion An analogy over eight orders of magnitude Similarities: same ingredients: compact object, accretion disk, jets same physics on different scales? [Mirabel 2004] Mierk Schwabe TU M¨unchen,MPE Garching Microquasars 11 of 46 Overview Analogy Quasar/Microquasar Population in our galaxy Total number Jets Currently known microquasars Accretion disk Example: GRS1915+105 Rotating Black Holes Conclusion Total number in milky way now known: 130 HMXB, 150 LMXB of those: 50 X-ray pulsars which are no radio emitters, 43 radio-emitting sources estimation of total number of X-ray binaries in galaxy brighter than 2 · 1034 erg s−1: about 700 thus upper limit on population of microquasars in our galaxy: ∼ 100 systems Mierk Schwabe TU M¨unchen,MPE Garching Microquasars 12 of 46 Overview Analogy Quasar/Microquasar Population in our galaxy Total number Jets Currently known microquasars Accretion disk Example: GRS1915+105 Rotating Black Holes Conclusion Currently known microquasars - HMXB Mierk Schwabe TU M¨unchen,MPE Garching Microquasars 13 of 46 Overview Analogy Quasar/Microquasar Population in our galaxy Total number Jets Currently known microquasars Accretion disk Example: GRS1915+105 Rotating Black Holes Conclusion Currently known microquasars - HMXB first microquasar discovered Mierk Schwabe TU M¨unchen,MPE Garching Microquasars 14 of 46 Overview Analogy Quasar/Microquasar Population in our galaxy Total number Jets Currently known microquasars Accretion disk Example: GRS1915+105 Rotating Black Holes Conclusion Currently known microquasars - HMXB during strong outburst, radio emission rises up by three orders of magnitudes Mierk Schwabe TU M¨unchen,MPE Garching Microquasars 15 of 46 Overview Analogy Quasar/Microquasar Population in our galaxy Total number Jets Currently known microquasars Accretion disk Example: GRS1915+105 Rotating Black Holes Conclusion Currently known microquasars - LMXB Part 1 Mierk Schwabe TU M¨unchen,MPE Garching Microquasars 16 of 46 Overview Analogy Quasar/Microquasar Population in our galaxy Total number Jets Currently known microquasars Accretion disk Example: GRS1915+105 Rotating Black Holes Conclusion Currently known microquasars - LMXB Part 1 ”runaway microquasar”: high velocity in eccentric orbit extraordinary kick, e.g. SN explosion Mierk Schwabe TU M¨unchen,MPE Garching Microquasars 17 of 46 Overview Analogy Quasar/Microquasar Population in our galaxy Total number Jets Currently known microquasars Accretion disk Example: GRS1915+105 Rotating Black Holes Conclusion Currently known microquasars - LMXB Part 1 first extrasolar point source of X-rays detected bipolar jets moving at 0.45c Mierk Schwabe TU M¨unchen,MPE Garching Microquasars 18 of 46 Overview Analogy Quasar/Microquasar Population in our galaxy Total number Jets Currently known microquasars Accretion disk Example: GRS1915+105 Rotating Black Holes Conclusion Currently known microquasars - LMXB Part 2 Mierk Schwabe TU M¨unchen,MPE Garching Microquasars 19 of 46 Overview Analogy Quasar/Microquasar Population in our galaxy Total number Jets Currently known microquasars Accretion disk Example: GRS1915+105 Rotating Black Holes Conclusion Currently known microquasars - LMXB Part 2 the most extensively studied system Mierk Schwabe TU M¨unchen,MPE Garching Microquasars 20 of 46 Overview Analogy Quasar/Microquasar Population in our galaxy Total number Jets Currently known microquasars Accretion disk Example: GRS1915+105 Rotating Black Holes Conclusion Introduction to GRS1915+105 position: in galactic plane, distance ∼ 12 kpc → very high extinction in optical band (20-30 mag) [Greiner et al. 2001] donor star: K-M III late type giant most massive stellar black hole known: (14 ± 4) MJ [Greiner et al. 2001] most energetic object known in our galaxy: luminosity L ∼ 1038 erg/s in low state Mierk Schwabe TU M¨unchen,MPE Garching Microquasars 21 of 46 Overview Analogy Quasar/Microquasar Population in our galaxy Total number Jets Currently known microquasars Accretion disk Example: GRS1915+105 Rotating Black Holes Conclusion Introduction to GRS1915+105 GRS1915+105 [Rau, A.] Mierk Schwabe TU M¨unchen,MPE Garching Microquasars 22 of 46 Overview Analogy Quasar/Microquasar Population in our galaxy Total number Jets Currently known microquasars Accretion disk Example: GRS1915+105 Rotating Black Holes Conclusion Spectrum of GRS1915+105 strongly variable X-ray source long-term variation in X-rays [Greiner 2000]: Mierk Schwabe TU M¨unchen,MPE Garching Microquasars 23 of 46 Overview Analogy Quasar/Microquasar Population in our galaxy Total number Jets Currently known microquasars Accretion disk Example: GRS1915+105 Rotating Black Holes Conclusion Spectrum of GRS1915+105 extremely variable in soft X-rays [Greiner et al. 1996] radio emission: jet composed of nodes which seem to move faster than light [Mirabel et al. 1994] Mierk Schwabe TU M¨unchen,MPE Garching Microquasars 24 of 46 Overview Analogy Quasar/Microquasar Relativistic effects Population in our galaxy Propagation Jets Emission from Jets Accretion disk Formation Rotating Black Holes Conclusion Superluminal motion observed in four galactic sources, common in quasars angle between axis and observer small, velocity near speed of light approaching jet node reduces distance to observer by vt cos θ → light travel time progressively shorter v sin θ Figure: [Ribo 2004] vr,a = (1±β cos θ) Mierk Schwabe TU M¨unchen,MPE Garching Microquasars 25 of 46 Overview Analogy
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages46 Page
-
File Size-