Catboost Cheat Sheet

Catboost Cheat Sheet

CatBoost cheat sheet Important CatBoost classes clf.grid_search(params # dict, X # Pool or list, # CatBoost feature data type y # list or none (if Pool), from catboost import Pool cv # cv function or no. of folds) # cross-validation generator ) from catboost import cv # classifier # compare two CatBoost models from catboost import CatBoostClassifier clf.compare(otherCBModel, # regressor evalDataset, from catboost import CatBoostRegressor metric # list of metric(s)) # general purpose (e.g. ranking) from catboost import CatBoost Model I/O Pool Save (export) models train_set= Pool(data, # data # Python format labels, # labels clf.save_model(filename, format="python") # indices/column names of # categorical features # C++ format cat_features, clf.save_model(filename, format="CPP") # workers to read from files: thread_count=-1 # JSON format # ... more functions clf.save_model(filename, format="json") # to define how inpute # data should be handled # PMML format ) clf.save_model(filename, format="pmml") # CoreML format Classifier/Regressor options clf.save_model(filename, format="coreml", export_parameters={ params={ 'iterations': # int, 'prediction_type': predictionType 'learning_rate': # float, }) 'depth': # range [1,16], 'task_type': 'GPU' # CPU/GPU, # Java, Rust (CatBoost binary model format) '': clf.save_model(filename, format="cbm") ) clf= CatBoostClassifier(params) Load (import) models Attributes clf= CatBoostClassifier() # Python format # similar to scikit-learn clf.load_model(filename, format="python") clf= CatBoostClassifier() clf.fit() # C++ format clf.predict() clf.load_model(filename, format="CPP") clf.predict_proba() # CoreML format # CatBoost-specific clf.load_model(filename, format="AppleCoreML") # cross-validation # (can be passed to grid_search) # CatBoost binary format scores= cv(train_set # pool, clf.load_model(filename, format="cbm") params # model params, fold_count # (int) folds, shuffle # bool, Other hints stratified # bool, ) • Many attributes have a option called “plot” to plot processes/metrcs/etc. # gridsearch for hyperparameter tuning • Do not use One-Hot-Encoding with CatBoost. (c) Simon Wenkel (https://www.simonwenkel.com) This pdf is licensed under the CC BY-SA 4.0 license.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    1 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us