Lifting Ballistic Coefficient”

Lifting Ballistic Coefficient”

Ballistic/Lifting Atmospheric Entry • Straight-line (no gravity) ballistic entry based on altitude, rather than density • Planetary entries (at least a start) • Basic equations of planar motion (with lif) • Lifing equilibrium glide © 2014 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu U N I V E R S I T Y O F Ballistic and Lifting Atmospheric Entry MARYLAND 1 ENAE 791 - Launch and Entry Vehicle Design Terminal Velocity Full form of ODE - d v2 h 2gh s v2 = s d⇤ ⇥ − β sin ⇥ ⇤ At terminal velocity, v = constant v ≡ T h 2gh s v2 = s −β sin ⇥ T ⇤ 2 2gβ sin ⇥ vT = − ⇤ U N I V E R S I T Y O F Ballistic and Lifting Atmospheric Entry MARYLAND 2 ENAE 791 - Launch and Entry Vehicle Design “Cannon Ball” γ=-90° Ballistic Entry 6.75” diameter sphere, cD=0.2, VE=6000 m/sec Iron Aluminum Balsa Wood Weight 40 lb 15.6 lb 14.5 oz β (kg/m2) 3938 1532 89 ρmd (kg/m3) 0.555 0.216 0.0125 hmd (m) 5600 12,300 32,500 Vimpact (m/s) 1998 355 0* Vterm (m/sec) 251 156 38 *Artifact of assumption that D mg U N I V E R S I T Y O F Ballistic and Lifting Atmospheric Entry MARYLAND 3 ENAE 791 - Launch and Entry Vehicle Design Atmospheric Density with Altitude Pressure=the integral of the atmospheric density in the column above the reference area 1 1 h h h 1 Po = ⇢gdh = ⇢og e− hs dh = ⇢oghs e− s ρ = f(h) o o − o Z Z h i = ⇢ gh [0 1] − o s − Po = ⇢oghs kg Earth: ρ = 1.226 ; h = 7524m; o m3 s Po(calc) = 90, 400 Pa; Po(act) = 101, 300 Pa ρo, Po U N I V E R S I T Y O F Ballistic and Lifting Atmospheric Entry MARYLAND 4 ENAE 791 - Launch and Entry Vehicle Design Nondimensional Ballistic Coefficient v h ⇤ ⇤ P ⇢ = exp s o =exp o v 2β sin ⇥ ⇤ 2βg sin γ ⇢ e o ⇥ ✓ o ◆ β βg Let β = (Nondimensional form of ballistic coefficient) ⌘ ⇢ohs Po Note that we are using the estimated value of P = ⇢ gh , b o o s not the actual surface pressure. v 1 ⇤ = exp v ⇤ e 2β sin ⇥ o ⇥ ⇤ h ⇤ 1 β = o s β = crit −sin ⇥ crit −sin ⇥ U N I V E R S I T Y O F Ballistic and Lifting Atmospheric Entry MARYLAND 5 ENAE 791 - Launch and Entry Vehicle Design Entry Velocity Trends, γ=-90° Velocity Ratio 0 0.2 0.4 0.6 0.8 1 0 0.1 0.2 0.3 0.4 0.5 0.6 Density Ratio 0.7 0.8 0.9 1 β 0.03 0.1 0.3 1 3 U N I V E R S I T Y O F Ballistic and Lifting Atmospheric Entry MARYLAND 6 ENAE 791 - Launch and Entry Vehicle Design Ballistic Entry, Again s = distance along the flight path v, s dv D γ = g sin γ dt − − m D horizontal Again assuming D g, mg dv D 1 = Drag D ρv2Ac dt −m ≡ 2 D dv ρc A = D v2 dt − 2m Separating the variables, dv ⇥ = dt v2 −2β U N I V E R S I T Y O F Ballistic and Lifting Atmospheric Entry MARYLAND 7 ENAE 791 - Launch and Entry Vehicle Design Calculating the Entry Velocity Profile dh dh = v sin γ dt = dt ⇒ v sin γ dv ⇤ dv ⇤ = dh = dh v2 −2βv sin ⇥ ⇥ v −2β sin ⇥ dv ⇤o h = e− hs dh v −2β sin ⇥ v h dv ⇤o h = e− hs dh v −2β sin ⇥ ve he h v ⇤ohs h 1 h he ln = e− hs = e− hs e− hs ve 2β sin ⇥ he 2β sin ⇥ − ⇥ ⇥ ⇤ U N I V E R S I T Y O F Ballistic and Lifting Atmospheric Entry MARYLAND 8 ENAE 791 - Launch and Entry Vehicle Design Deriving the Entry Velocity Function he ρe Remember that e− hs = 0 ρo ≈ v 1 h = exp e− hs v e 2β sin ⇥ ⇥ We have a parametric entry equation in terms of nondimensional velocity ⇤ ratios, ballistic coefficient, and altitude. To bound the nondimensional altitude variable between 0 and 1, rewrite as v 1 h he = exp e− he hs v e 2β sin ⇥ ⇥ he and β are the⇤ only variables that relate to a specific planet hs U N I V E R S I T Y O F Ballistic and Lifting Atmospheric Entry MARYLAND 9 ENAE 791 - Launch and Entry Vehicle Design Earth Entry, γ=-90° 1 0.9 0.8 0.7 0.6 0.5 0.4 Altitude Ratio 0.3 0.2 0.1 0 0 0.2 0.4 0.6 0.8 1 Velocity Ratio β 0.03 0.1 0.3 1 3 U N I V E R S I T Y O F Ballistic and Lifting Atmospheric Entry MARYLAND 10 ENAE 791 - Launch and Entry Vehicle Design Deceleration as a Function of Altitude Start with v 1 h he 1 = exp e− he hs Let B ve ≡ 2β sin ⇥ 2β sin ⇥ ⇥ v h = exp B⇤e− hs ve ⇥ d v h d h = exp Be− hs Be− hs dt ve dt ⇤ ⌅ ⇥ ⇥ dv h B h dh = ve exp Be− hs − e− hs dt hs dt ⇥ ⇥ dh h = v sin γ = v sin γ exp Be− hs dt e U N I V E R S I T Y O F Ballistic and Lifting Atmospheric Entry MARYLAND 11 ENAE 791 - Launch and Entry Vehicle Design Parametric Deceleration dv h B h h = ve exp Be− hs − e− hs ve sin γ exp Be− hs dt hs ⇥ ⇥ ⇥ 2 dv Bve h h = − sin γ e− hs exp 2Be− hs dt hs ⇥ ⇥ 2 dv ve h 1 h = − e− hs exp e− hs dt 2h β β sin ⇥ s ⇥ ⇤ ⌅ 2 ve dv/dt he ⇧ Let nref ⇧, ν , ⇥ ≡ hs ≡ nref ≡ hs 1 ϕ h 1 ϕ h ⇤ = − e− he exp e− he 2β β sin ⇥ ⇥ ⇤ ⌅ U N I V⇧ E R S I T Y O F ⇧ Ballistic and Lifting Atmospheric Entry MARYLAND 12 ENAE 791 - Launch and Entry Vehicle Design Nondimensional Deceleration, γ=-90° 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 Altitude Ratio h/he Altitude Ratio 0.2 0.1 0 0 0.05 0.1 0.15 0.2 Deceleratio ν β 0.03 0.1 0.3 1 3 U N I V E R S I T Y O F Ballistic and Lifting Atmospheric Entry MARYLAND 13 ENAE 791 - Launch and Entry Vehicle Design Deceleration Equations Nondimensional Form 1 ϕ h 1 ϕ h ⇤ = − e− he exp e− he 2β β sin ⇥ ⇥ ⇤ ⌅ Dimensional Form ⇧ 2 ⇧ ⇤oVe h ⇤ohs h n = − e− hs exp e− hs 2β β sin ⇥ ⇥ ⇤ ⌅ Note that these equations result in values <0 (reflecting deceleration) - graphs are absolute values of deceleration for clarity. U N I V E R S I T Y O F Ballistic and Lifting Atmospheric Entry MARYLAND 14 ENAE 791 - Launch and Entry Vehicle Design Dimensional Deceleration, γ=-90° 120 ) 100 m k ( 80 60 Altitude Altitude 40 20 0 0 500 1000 1500 2000 m Deceleration kg 2 β sec m2 277 922 2767 9224⇥ 27673 ⇥ U N I V E R S I T Y O F Ballistic and Lifting Atmospheric Entry MARYLAND 15 ENAE 791 - Launch and Entry Vehicle Design Altitude of Maximum Deceleration Returning to shorthand notation for deceleration h h ⇥ = B sin γ e− hs exp 2Be− hs − h ⇥ ⇥ Let η ≡ hs η η ⇥ = B sin γ e− exp 2Be− − d⇤ d⇥ η ⇥ η η d η = B sin γ e− exp 2Be− + e− exp 2Be− d⇥ − d⇥ d⇥ ⇤ ⌅ ⇥ ⇥ ⇥ ⇥ d⇤ η η η η η = B sin γ e− exp 2Be− + e− 2Be− exp 2Be− d⇥ − − − ⇤ ⇥ ⇥ ⇥ ⇥ ⇥⌅ d⇤ η η η = B sin γe− exp 2Be− 1 + 2Be− = 0 d⇥ ⇥ ⇤ ⇥⌅ U N I V E R S I T Y O F Ballistic and Lifting Atmospheric Entry MARYLAND 16 ENAE 791 - Launch and Entry Vehicle Design Altitude of Maximum Deceleration η η 1 + 2Be− = 0 e = 2B ⇥ − ⇥ η = ln ( 2B) nmax − 1 ⇤nmax = ln − β sin ⇥ ⇥ Converting from parametric to dimensional form gives ⇤ ⇤ h h = h ln − o s nmax s β sin ⇥ ⇥ Altitude of maximum deceleration is independent of entry velocity! U N I V E R S I T Y O F Ballistic and Lifting Atmospheric Entry MARYLAND 17 ENAE 791 - Launch and Entry Vehicle Design Altitude of Maximum Deceleration 12 10 8 6 4 2 Altitude of Max Decel h/hs Altitude of 0 0 0.2 0.4 0.6 0.8 1 Ballistic Coefficient β γ -15 -30 -45 -60 -90 U N I V E R S I T Y O F Ballistic and Lifting Atmospheric Entry MARYLAND 18 ENAE 791 - Launch and Entry Vehicle Design Magnitude of Maximum Deceleration Start with the equation for acceleration - 1 η 1 η ⇤ = − e− exp e− 2β β sin ⇥ ⇥ and insert the value of η at the point of maximum deceleration ⇤ ⇤ 1 η ⇤ = ln − e− = β sin ⇥ nmax ⇥ − β sin ⇥ ⇥ 1 β sin ⇥ sin γ ⇤nmax = − ⇤ β sin ⇥ exp − ⇥nmax = 2β − ⇤ β sin ⇥ ⌅ ⇒ 2e ⇥ ⇧ 2 ⇧ ve sin γ nmax = ⇧ ⇧ hs 2e Maximum deceleration is not a function of ballistic coefficient! U N I V E R S I T Y O F Ballistic and Lifting Atmospheric Entry MARYLAND 19 ENAE 791 - Launch and Entry Vehicle Design Peak Ballistic Deceleration for Earth Entry 6000 5000 4000 3000 2000 1000 Peak Deceleration (m/sec^2) Peak Deceleration 0 0 5 10 15 Entry Velocity (km/sec) γ -15 -30 -45 -60 -90 U N I V E R S I T Y O F Ballistic and Lifting Atmospheric Entry MARYLAND 20 ENAE 791 - Launch and Entry Vehicle Design Velocity at Maximum Deceleration Start with the equation for velocity v 1 η = exp e− v e 2β sin ⇥ ⇥ and insert the value of η at the point of maximum deceleration ⇤ 1 η ⇤ = ln − e− = β sin ⇥ nmax ⇥ − β sin ⇥ ⇥ v β sin ⇥ v ⇤ v = e 0.606v = exp − nmax ∼= e ve 2β sin ⇥ ⇥ ⇥ ⇤e ⇤ Velocity at maximum⇤ deceleration is independent of everything except ve U N I V E R S I T Y O F Ballistic and Lifting Atmospheric Entry MARYLAND 21 ENAE 791 - Launch and Entry Vehicle Design Planetary Entry - Physical Data Radius µ ρo hs vesc (km) (km3/sec2) (kg/m3) (km) (km/sec) Earth 6378 398,604 1.225 7.524 11.18 Mars 3393 42,840 0.0993 27.70 5.025 Venus 6052 325,600 16.02 6.227 10.37 U N I V E R S I T Y O F Ballistic and Lifting Atmospheric Entry MARYLAND 22 ENAE 791 - Launch and Entry Vehicle Design Comparison of Planetary Atmospheres 100 1 0.01 0 50 100 150 200 250 300 1E-04 1E-06 1E-08 1E-10 1E-12 1E-14 1E-16 Atmospheric Density (kg/m3) Density Atmospheric 1E-18 1E-20 Altitude (km) Earth Mars Venus U N I V E R S I T Y O F Ballistic and Lifting Atmospheric Entry MARYLAND 23 ENAE 791 - Launch and Entry Vehicle Design Planetary Entry Profiles γ = 15o kg − β = 300 km m2 v = 10 e sec V Ve U N I V E R S I T Y O F Ballistic and Lifting Atmospheric Entry MARYLAND 24 ENAE 791 - Launch and Entry Vehicle Design Planetary Entry Deceleration Comparison γ = 15o − km v = 10 e sec kg β = 300 m2 U N I V E R S I T Y O F Ballistic and Lifting Atmospheric Entry MARYLAND 25 ENAE 791 - Launch and Entry Vehicle Design Check on Approximation Formulas γ = 15o − km v = 10 e sec kg β = 300 m2 U N I V E R S I T Y O F Ballistic and Lifting Atmospheric Entry MARYLAND 26 ENAE 791 - Launch and Entry Vehicle Design Lifting Entry – Free-Body Diagram mv2 v, s L r γ D horizontal mg U N I V E R S I T Y O F Ballistic and Lifting Atmospheric Entry MARYLAND 27 ENAE 791 - Launch and Entry Vehicle Design Dynamics of Lifting Entry Along the velocity vector, dv v2 m = m sin γ mg sin γ D dt r − − Perpendicular to the velocity vector, dγ v2 mv = L + m cos γ mg cos

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    52 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us