Prepared for the National Aeronautics and Space Administration Geologic Map of the Niobe Planitia Quadrangle (V–23), Venus By Vicki L. Hansen Pamphlet to accompany Scientific Investigations Map 3025 75° 75° V–1 50° V–2 V–4 50° V–3 V–8 V–13 V–9 V–12 V–10 V–11 25° 25° V–20 V–25 V–21 V–24 V–22 V–23 0° 30° 60° 90° 120° 150° 180° 0° 0° V–34 V–35 V–33 V–36 V–32 V–37 –25° –25° V–46 V–47 V–45 V–48 V–44 V–49 V–57 ° ° –50 V–56 V–58 –50 2009 V–62 –75° –75° U.S. Department of the Interior QUADRANGLE LOCATION U.S. Geological Survey Photomosaic showing location of map area. An outline of 1:5,000,000-scale quadrangles is provided for reference. Contents The Magellan Mission...................................................................................................................................1 Magellan radar data .............................................................................................................................1 Niobe Planitia quadrangle ............................................................................................................................1 Introduction............................................................................................................................................1 Image data ....................................................................................................................................2 Image interpretation ....................................................................................................................2 Terminology ...................................................................................................................................3 Geologic setting ....................................................................................................................................3 Geologic relations .................................................................................................................................4 Basal terrain units........................................................................................................................4 Tessera and intratessera terrain ......................................................................................4 Fracture terrain ...................................................................................................................6 Shield terrain material ................................................................................................................6 23N/103E ...............................................................................................................................6 21N/113E ...............................................................................................................................7 13N/111E ...............................................................................................................................7 23N/117E ...............................................................................................................................7 13N/119E ...............................................................................................................................7 Flow units ......................................................................................................................................8 Flows originating within V–23 ...........................................................................................8 Rosmerta flows ...................................................................................................................8 Impact features .....................................................................................................................................8 Tectonic structures ...............................................................................................................................9 Regional structural suites ..........................................................................................................9 Regional extensional fractures ........................................................................................9 Wrinkle ridges .....................................................................................................................9 Inversion structures ...........................................................................................................9 Fabric anisotropy and implications for stress-strain relations ...................................9 Coronae ................................................................................................................................................10 Maya Corona ..............................................................................................................................10 Dhisana Corona ..........................................................................................................................10 Allatu Corona ..............................................................................................................................11 Bhumiya Corona .........................................................................................................................11 Omeciuatl Corona ......................................................................................................................11 Rosmerta Corona .......................................................................................................................11 Formation of circular lows .......................................................................................................12 Dorsa ..................................................................................................................................................12 Geologic history ..................................................................................................................................13 Implications for Venus lowland resurfacing processes ........................................................................14 Summary........................................................................................................................................................16 References cited ..........................................................................................................................................18 Figure 12. Illustrations showing proposed evolution of Venusian surface .......................................................17 Tables 1. Numbers and densities of definite and combined shields ................................................................21 2. V–23 impact craters.................................................................................................................................22 i The Magellan Mission above which high-dielectric minerals or coatings are thought to be present. This leads to very bright SAR echoes from virtually The Magellan spacecraft orbited Venus from August 10, all areas above that critical elevation. 1990, until it plunged into the Venusian atmosphere on October The measurements of passive thermal emission from 12, 1994. Magellan Mission objectives included (1) improving Venus, though of much lower spatial resolution than the SAR the knowledge of the geological processes, surface properties, data, are more sensitive to changes in the dielectric constant and geologic history of Venus by analysis of surface radar char- of the surface than to roughness. They can be used to augment acteristics, topography, and morphology and (2) improving the studies of the surface and to discriminate between roughness knowledge of the geophysics of Venus by analysis of Venusian and reflectivity effects. Observations of the near-nadir back- gravity. scatter power, collected using a separate smaller antenna on The Magellan spacecraft carried a 12.6-cm radar system to the spacecraft, were modeled using the Hagfors expression map the surface of Venus. The transmitter and receiver systems for echoes from gently undulating surfaces to yield estimates were used to collect three data sets: (1) synthetic aperture radar of planetary radius, Fresnel reflectivity, and root-mean-square (SAR) images of the surface, (2) passive microwave thermal (rms) slope. The topographic data produced by this technique emission observations, and (3) measurements of the backscat- have horizontal footprint sizes of about 10 km near periapsis tered power at small angles of incidence, which were processed and a vertical resolution on the order of 100 m. The Fresnel to yield altimetric data. Radar imaging and altimetric and radio- reflectivity data provide a comparison to the emissivity maps, metric mapping of the Venusian surface were accomplished in and the rms slope parameter is an indicator of the surface tilts, mission cycles 1, 2, and 3 from September 1990 until Septem- which contribute to the quasi-specular scattering component. ber 1992. Ninety-eight percent of the surface was mapped with radar resolution on the order of 120 m. The SAR observations were projected to a 75-m nominal horizontal resolution, and Niobe Planitia Quadrangle these full-resolution data compose the image base used in geologic mapping. The primary polarization mode was hori- zontal-transmit, horizontal-receive (HH), but additional data for Introduction selected areas were collected for the vertical polarization sense. Niobe Planitia, namesake of the Niobe Planitia quadrangle Incidence angles varied between about 20° and 45°. (V–23), is named for Niobe, Queen
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages28 Page
-
File Size-