
ECE 646 - Lecture 7 Required Reading • W. Stallings, Cryptography and Network Security, Historical Ciphers Chapter 3, Classical Encryption Techniques Part 2 • A. Menezes et al., Handbook of Applied Cryptography, Chapter 7.3 Classical ciphers and historical development 1 2 Substitution Ciphers (2) 14 12 Character frequency 2. Polyalphabetic substitution cipher 10 in a long English 8 plaintext M = m1 m2 … md 6 md+1 md+2 … m2d 4 m2d+1 m2d+2 … m3d 2 ….. 0 a b c d e f g h i j k l m n o p q r s t u v w x y z C = f1(m1) f2(m2) … fd(md) Character frequency 14 in the corresponding f1(md+1) f2(md+2) … fd(m2d ) 12 f (m ) f ( m ) … f (m ) ciphertext 1 2d+1 2 2d+2 d 3d 10 for a polyalphabetic ….. 8 substitution cipher d is a period of the cipher 6 1 × 100% » 3.8 % 4 26 Key = d, f1, f2, …, fd 2 d 26 d Number of keys for a given period d = (26!) » (4 × 10 ) 0 a b c d e f g h i j k l m n o p q r s t u v w x y z 3 4 Polyalphabetic substitution ciphers Vigenère Cipher - Example Simplifications (1) Plaintext: TO BE OR NOT TO BE A. Vigenère cipher: polyalphabetic shift cipher Key: NSA Invented in 1568 Encryption: T O B E O R ci = fi mod d(mi) = mi + ki mod d mod 26 N O T T O B -1 mi = f i mod d(ci) = ci - ki mod d mod 26 E Key = k0, k1, … , kd-1 Number of keys for a given period d = (26)d 5 6 1 Vigenère Square Vigenère Square plaintext: a b c d e f g h i j k l m n o p q r s t u v w x y z plaintext: a b c d e f g h i j k l m n o p q r s t u v w x y z 3 a b c d e f g h i j k l m n o p q r s t u v w x y z a b c d e f g h i j k l m n o p q r s t u v w x y z b c d e f g h i j k l m n o p q r s t u v w x y z a b c d e f g h i j k l m n o p q r s t u v w x y z a N S A c d e f g h i j k l m n o p q r s t u v w x y z a b c d e f g h i j k l m n o p q r s t u v w x y z a b d e f g h i j k l m n o p q r s t u v w x y z a b c d e f g h i j k l m n o p q r s t u v w x y z a b c T O B e f g h i j k l m n o p q r s t u v w x y z a b c d e f g h i j k l m n o p q r s t u v w x y z a b c d f g h i j k l m n o p q r s t u v w x y z a b c d e f g h i j k l m n o p q r s t u v w x y z a b c d e E O R g h i j k l m n o p q r s t u v w x y z a b c d e f g h i j k l m n o p q r s t u v w x y z a b c d e f h i j k l m n o p q r s t u v w x y z a b c d e f g h i j k l m n o p q r s t u v w x y z a b c d e f g N O T i j k l m n o p q r s t u v w x y z a b c d e f g h i j k l m n o p q r s t u v w x y z a b c d e f g h T O B j k l m n o p q r s t u v w x y z a b c d e f g h i j k l m n o p q r s t u v w x y z a b c d e f g h i k l m n o p q r s t u v w x y z a b c d e f g h i j k l m n o p q r s t u v w x y z a b c d e f g h i j E l m n o p q r s t u v w x y z a b c d e f g h i j k l m n o p q r s t u v w x y z a b c d e f g h i j k m n o p q r s t u v w x y z a b c d e f g h i j k l m n o p q r s t u v w x y z a b c d e f g h i j k l 1 G G B n o p q r s t u v w x y z a b c d e f g h i j k l m n o p q r s t u v w x y z a b c d e f g h i j k l m o p q r s t u v w x y z a b c d e f g h i j k l m n o p q r s t u v w x y z a b c d e f g h i j k l m n R G R p q r s t u v w x y z a b c d e f g h i j k l m n o p q r s t u v w x y z a b c d e f g h i j k l m n o q r s t u v w x y z a b c d e f g h i j k l m n o p q r s t u v w x y z a b c d e f g h i j k l m n o p A G T r s t u v w x y z a b c d e f g h i j k l m n o p q r s t u v w x y z a b c d e f g h i j k l m n o p q 2 G G B s t u v w x y z a b c d e f g h i j k l m n o p q r s t u v w x y z a b c d e f g h i j k l m n o p q r t u v w x y z a b c d e f g h i j k l m n o p q r s t u v w x y z a b c d e f g h i j k l m n o p q r s R u v w x y z a b c d e f g h i j k l m n o p q r s t u v w x y z a b c d e f g h i j k l m n o p q r s t v w x y z a b c d e f g h i j k l m n o p q r s t u v w x y z a b c d e f g h i j k l m n o p q r s t u w x y z a b c d e f g h i j k l m n o p q r s t u v w x y z a b c d e f g h i j k l m n o p q r s t u v x y z a b c d e f g h i j k l m n o p q r s t u v w x y z a b c d e f g h i j k l m n o p q r s t u v w y z a b c d e f g h i j k l m n o p q r s t u v w x y z a b c d e f g h i j k l m n o p q r s t u v w x z a b c d e f g h i j k l m n o p q r s t u v w x y z a b c d e f g h i j k l m n o p q r s t u v w x y 7 8 Vigenère Cipher - Example Determining the period of the polyalphabetic cipher Plaintext: TO BE OR NOT TO BE Kasiski’s method Key: NSA N S A Ciphertext: G G B R G R A G T G G B R Encryption: T O B E O R N O T Distance = 9 T O B E Period d is a divisor of the distance between G G B identical blocks of the ciphertext R G R A G T G G B In our example: d = 3 or 9 R Ciphertext: GGBRGRAGTGGBR 9 10 Index of coincidence method (1) Index of coincidence method (2) ni - number of occurances of the letter i in the ciphertext Measure of roughness: i = a .
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages8 Page
-
File Size-