Vector Calculus (7 Lectures)

Vector Calculus (7 Lectures)

An Invitation to Mathematical Physics and its History Jont B. Allen Copyright c 2016 Jont Allen Help from Steve Levinson, John D’Angelo, Michael Stone University of Illinois at Urbana-Champaign January 2, 2017 2 Contents 1 Introduction 15 1.1 EarlyScienceandMathematics . .......... 17 1.1.1 Lecture 1: (Week 1 ) Three Streams from the Pythagorean theorem . 17 1.1.2 PythagoreanTriplets. ....... 18 1.1.3 Whatismathematics? . ..... 19 1.1.4 EarlyPhysicsasMathematics. ........ 19 1.1.5 Thebirthofmodernmathematics . ....... 21 1.1.6 TheThreePythagoreanStreams . ....... 22 1.2 Stream1: NumberSystems(9Lectures) . ........... 23 1.2.1 Lecture 2: The Taxonomy of Numbers: P, N, Z, Q, I, R, C ............. 24 1.2.2 Lecture 3: The role of physics in mathematics . ............ 28 1.2.3 Lecture4:Primenumbers . ..... 32 1.2.4 Lecture 5: Early number theory: The Euclidean algorithm............. 35 1.2.5 Lecture 6: Early number theory: Continued fractions . ............... 36 1.2.6 Labor day: Week 3 ................................... 39 1.2.7 Lecture 7: Pythagorean triplets (Euclid’s formula) . ................ 39 1.2.8 Lecture 8: (Week 3 )Pell’sEquation ......................... 39 1.2.9 Lecture 9: (Week 4 )Fibonaccisequence . 42 1.2.10 Lecture10:ExamI .............................. 43 1.3 Stream 2: Algebraic Equations (11 Lectures) . .............. 43 1.3.1 Lecture 11: (Week 4) Algebra and mathematics driven by physics . 43 1.3.2 Lecture 12: (Week 5 ) Examples of nonlinear algebra in Physics . 47 1.3.3 Lecture 13: Polynomial root classification (convolution) .............. 48 1.3.4 Lecture 14: Introduction to Analytic Geometry . ............. 50 1.3.5 Lecture 15: (Week 6 )GaussianElimination . 53 1.3.6 Lecture 16: Transmission (ABCD) matrix composition method .......... 54 1.3.7 Lecture17:RiemannSphere . ...... 56 1.3.8 Lecture 18: (Week 7 ) Complex analytic mappings (Domain coloring) . 58 1.3.9 Lecture 19: Signals: Fourier transforms . ............ 58 1.3.10 Lecture 20: Systems: Laplace transforms . ............ 63 1.3.11 Lecture 21: (Week 8 ) Network (System) Postulates . 64 1.3.12 Lecture22:ExamII ............................. ..... 65 1.4 Stream 3a: Scalar Calculus (12 Lectures) . ............. 65 1.4.1 Lecture 23: (Week 8 ) Integration in the complex plane . 66 1.4.2 Lecture 24: (Week 9 ) Cauchy-Riemann conditions . 68 1.4.3 Lecture 25: Complex Analytic functions and Impedance .............. 69 1.4.4 Lecture 26: Branch cuts, Riemann Sheets . .......... 71 1.4.5 Lecture 27: (Week 10 ) Three complex integration theorems I . 74 1.4.6 Lecture 28: Three complex integration theorems II . .............. 75 1.4.7 Lecture 29: Inverse Laplace transform (Cauchy residuetheorem) . 75 1.4.8 Lecture 30: (Week 11 ) Inverse Laplace transform and the Cauchy Residue Theorem 76 3 4 CONTENTS 1.4.9 Lecture31: PropertiesoftheLT . ........ 77 1.4.10 Lecture32: BruneImpedance . ....... 78 1.4.11 Lecture 33: (Week 12 ) The Riemann Zeta function ζ(s).............. 82 1.4.12 Lecture34:ExamIII ............................ ..... 85 1.5 Stream 3b: Vector Calculus (7 Lectures) . ............. 85 1.5.1 Lecture 35: (Week 13 )ScalarWaveEquation . 85 1.5.2 Lecture 36: (Week 13 )Websterhornequation. 86 1.5.3 Alternate forms of the Webster Horn Equation . ........... 88 1.5.4 General solutions of the Horn Equation . .......... 89 1.5.5 Primitive solutions ̺±(x,t) .............................. 89 1.5.6 Theuniformhorn ................................ 94 1.5.7 Lecture 37: Gradient, divergence and Laplacian; Gauss’Law ........... 95 1.5.8 Lecture 38: Curl, scaler & Vector Laplacian Part; Stoke’sLaw .......... 96 1.5.9 Lecture 39: (Week 14 ) Maxwell’s Equations: The unification E&M . 99 1.5.10 Lecture 40: The fundamental theorem of vector calculus..............100 1.5.11 Lecture 41: Quasi-statics and the Wave equation . .............103 1.5.12 Lecture42: Finaloverview . ........105 2 Number Systems: Stream 1 107 2.1 Week2........................................... 107 2.1.1 Lec 4 Twotheoremsonprimes . 107 2.1.2 Lec 5 Greatestcommondivisor(GCD) . 109 2.1.3 Lec 6 Continued Fraction Expansion (CFA) . 111 2.2 Week3........................................... 112 2.2.1 Lec 7 Pythagorean triplets (PTs) and Euclid’s formula , . 112 2.2.2 Lec 8 Pell’sEquation .................................115 2.3 Week4........................................... 116 2.3.1 Lec 9 FibonacciNumbers ............................... 116 2.3.2 Lec 10 ExamI .....................................117 3 Algebraic Equations: Stream 2 119 3.1 Week4........................................... 119 3.1.1 Lec 11 Algebraandgeometryasphysics . 119 3.2 Week5........................................... 121 3.2.1 Lec 12 The physics behind complex analytic expressions: linear vs. nonlinear . 121 3.2.2 Lec 13 Rootclassificationofpolynomials . 124 3.2.3 Lec 14 AnalyticGeometry............................... 126 3.3 Week6........................................... 127 3.3.1 Lec 15 Gaussian Elimination of linear equations . 127 3.3.2 Lec 16 Matrixcomposition: BilinearandABCD . 130 3.3.3 Lec 17 Introduction to the Branch cut and Riemann sheets . 131 3.4 Week7........................................... 131 3.4.1 Lec 18 Complex analytic mappings (domain coloring) . 131 3.4.2 Lec 19 Signals and Systems: Fourier vs. Laplace Transforms . 133 3.4.3 Lec 20 Role of Causality and the Laplace Transform . 133 3.5 Week8........................................... 133 3.5.1 Lec 21 The 9 postulates of System of algebraic Networks . 133 3.5.2 Lec 22 ExamII(Evening) ..............................139 CONTENTS 5 4 Scalar Calculus: Stream 3a 141 4.1 Week8........................................... 141 4.1.1 Lec 23 Newton and early calculus & the Bernoulli Family . 141 4.2 Week9........................................... 143 4.2.1 Lec 24 Power series and complex analytic functions . 143 4.2.2 Lec 25 Integrationinthecomplexplane . 143 4.2.3 Lec 26 Cauchy Riemann conditions: Complex-analytic functions . 143 4.3 Week10.......................................... 144 4.3.1 Lec 27 Differentiationinthecomplexplane . 144 4.3.2 Lec 28 ThreecomplexIntegralTheorems . 144 4.3.3 Lec 29 InverseLaplaceTransform. 144 4.4 Week11.......................................... 145 4.4.1 Lec 30 Inverse Laplace Transform & Cauchy residue theorem . 145 4.4.2 Lec 31 Thecaseforcausality ............................. 145 4.4.3 Lec 32 Laplace transform properties: Modulation, time translation, etc. 145 4.5 Week12.......................................... 146 4.5.1 Lec 33 Multi-valued complex functions, Branch Cuts, Extended plane ......146 4.5.2 Lec 34 The Riemann Zeta function ζ(s) .......................146 4.5.3 Lec 35 ExamIII ....................................147 5 Vector Calculus: Stream 3b 149 5.1 Week13.......................................... 149 5.1.1 Lec 36 ScalarWaveequation . 149 5.1.2 Lec 37 Partial differential equations of physics . 149 5.1.3 Lec 38 Gradient, divergence and curl vector operators . 149 5.2 ThanksgivingHoliday ............................. ........150 5.3 Week14.......................................... 150 5.3.1 Lec 39 Geometry of Gradient, divergence and curl vector operators .......150 5.3.2 Lec: 40 IntroductiontoMaxwell’sEquation . 150 5.3.3 Lec: 41 The Fundamental theorem of Vector Calculus . 150 5.4 Week15.......................................... 151 5.4.1 Lec 42: The Quasi-static approximation and applications . 151 5.4.2 Lec 43: Last day of class: Review of Fund Thms of Mathematics . 152 A Notation 155 A.1 Numbersystems ................................... 155 A.1.1 Symbolsandfunctions. 155 A.1.2 Greekletters .................................. 155 A.1.3 Table of double-bold numbernotation ........................ 155 A.2 Complex vectors and the impedance matrix . ............156 A.2.1 Vectors in R3 ......................................157 A.3 Matrices........................................ 158 A.4 Periodicfunctions ............................... ........158 A.5 Differential equations vs. Polynomials . ..............159 B Linear algebra of 2x2 matrices 161 B.1 Notation........................................ 161 B.1.1 Gaussianeliminationexercises . ..........163 B.2 Inverseofthe2x2matrix . ........164 B.2.1 Derivationoftheinverseofa2x2matrix. ...........164 C Eigenvector analysis 165 6 CONTENTS D Solution to Pell’s Equation (N=2) 169 D.1 PellequationforN=3 .............................. .......169 E Laplace transforms 171 F Transmission lines 173 F.0.1 Transferfunctions ............................. 173 G 2D parabolic horn 177 G.0.1 3DConicalHorn ................................. 178 G.0.2 ExponentialHorn ............................... 180 G.1 Derivation of the Webster Horn Equation . ............182 G.2 Theinverseproblem ............................... .......183 G.3 WKBmethod....................................... 183 G.4 Rydbergseries ................................... 184 G.5 Laplacian operator in N dimensions .............................184 H Filter classification 185 H.0.1 Giventhefunction: ............................. 185 H.0.2 Morequestions ................................. 185 H.0.3 Entropyanalysis ............................... 186 I Stillwell’s Intersection vs. composition 187 CONTENTS 7 1 Abstract 2 An understanding of physics requires knowledge of mathematics. The contrary is not true. By defi- 3 nition, pure mathematics contains no physics. Yet historically, mathematics has a rich history filled 4 with physical applications. Mathematics was developed by people with intent of making things work. 5 In my view, as an engineer,

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    204 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us