1=Numerical Relativity Simulations of Black Holes

1=Numerical Relativity Simulations of Black Holes

Numerical Relativity simulations of black holes: Methodology and Computational Framework U. Sperhake CSIC-IEEC Barcelona Numerical Cosmology 2012 19th July 2012 U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/20121 / 67 Overview Motivation Modeling black holes in GR Black holes in astrophysics High-energy collisions of black holes The AdS/CFT correspondence Stability, Cosmic Censorship Conclusions U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/20122 / 67 1. Motivation U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and19/07/2012 Computational 3 / 67 Framework What are black holes? Consider Lightcones In and outgoing light Calculate surface of outgoing light fronts Expansion ≡ Rate of change of this surface Apparent Horizon ≡ Outermost surface with zero expansion “Light cones tip over” due to curvature U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/20124 / 67 Black holes are out there: Stellar BHs high-mass X-ray binaries: Cygnus X-1 (1964) U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/20125 / 67 Black holes are out there: Stellar BHs One member is very compact and massive ) Black Hole U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/20126 / 67 Black holes are out there: galactic BHs Supermassive BHs found at center of virtually all galaxies SMBHs conjectured to be responsible for quasars starting in the 1980s U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/20127 / 67 BHs are strong sources of gravitational waves BH binaries source of GWs for LIGO, VIRGO, GEO600, “LISA” Cross corellate model waveforms with data stream U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/20128 / 67 Black holes might be in here: LHC LHC CERN U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/20129 / 67 BH generation in TeV -gravity scenarios Extra dimensions can explain hierarchy problem Arkani-Hamed, Dimopoulos & Dvali ’98 Randall & Sundrum ’98 Gravity dominant at ∼ TeV ) BH formation in LHC collisions Signature: # jets, leptons, transverse energy TODO: determine Cross section, GW loss, BH spin U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/201210 / 67 AdS/CFT correspondence CFTs in D = 4 dual to asymptotically AdS BHs in D = 5 Study cousins of QCD, e. g. N = 4 SYM Applications Quark-gluon plasma; heavy-ion collisions, RHIC Condensed matter, superconductors Dictionary: Metric fall-off $ Tαβ U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/201211 / 67 2. Modeling black holes in GR U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology19/07/2012 and Computational 12 / 67 Framework General Relativity: Curvature Curvature generates acceleration “geodesic deviation” No “force”!! Description of geometry Metric gαβ α Connection Γβγ α Riemann Tensor R βγδ U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/201213 / 67 How to get the metric? Train cemetery Uyuni, Bolivia Solve for the metric gαβ U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/201214 / 67 How to get the metric? The metric must obey the Einstein Equations Ricci-Tensor, Einstein Tensor, Matter Tensor µ Rαβ ≡ R αµβ 1 µ Gαβ ≡ Rαβ − 2 gαβR µ “Trace reversed” Ricci Tαβ “Matter” Einstein Equations Gαβ = 8πTαβ Solutions: Easy! Take metric ) Calculate Gαβ ) Use that as matter tensor Physically meaningful solutions: Difficult! ) Numerics U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/201215 / 67 A list of tasks Target: Predict time evolution of BBH in GR Einstein equations: 1) Cast as evolution system 2) Choose specific formulation 3) Discretize for computer Choose coordinate conditions: Gauge Fix technical aspects: 1) Mesh refinement / spectral domains 2) Singularity handling / excision 3) Parallelization Construct realistic initial data Start evolution and waaaaiiiiit... Extract physics from the data U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/201216 / 67 3+1 Decomposition GR: “Space and time exist as a unity: Spacetime” NR: ADM 3+1 split Arnowitt, Deser & Misner ’62 York ’79, Choquet-Bruhat & York ’80 2 m −α + βmβ βj gαβ = βi γij 3-Metric γij Lapse α Shift βi lapse, shift ) Gauge U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/201217 / 67 ADM Equations The Einstein equations Rαβ = 0 become 6 Evolution equations (@t − Lβ)γij = −2αKij m (@t − Lβ)Kij = −Di Dj α + α[Rij − 2KimK j + Kij K ] 4 Constraints 2 ij R + K − Kij K = 0 ij i −Dj K + D K = 0 preserved under evolution! Evolution 1) Solve constraints 2) Evolve data U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/201218 / 67 Formulations I: BSSN One can easily change variables. E. g. wave equation @tt u − c@xx u = 0 , @t F − c@x G = 0 @x F − @t G = 0 BSSN: rearrange degrees of freedom −1=3 χ = (det γ) γ~ij = χγij ij ~ 1 K = γij K Aij = χ Kij − 3 γij K ~i mn~i im Γ =γ ~ Γmn = −@mγ~ Shibata & Nakamura ’95, Baumgarte & Shapiro ’98 BSSN strongly hyperbolic, but depends on details... Sarbach et al.’02, Gundlach & Martín-García ’06 U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/201219 / 67 Formulations I: BSSN U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/201220 / 67 Formulations II: Generalized harmonic (GHG) Harmonic gauge: choose coordinates such that µ α rµr x = 0 4-dim. version of Einstein equations 1 µν Rαβ = − 2 g @µ@νgαβ + ::: Principal part of wave equation µ ν Generalized harmonic gauge: Hα ≡ gανrµr x 1 µν 1 ) Rαβ = − 2 g @µ@νgαβ + ::: − 2 (@αHβ + @βHα) Still principal part of wave equation !!! Manifestly hyperbolic Friedrich ’85, Garfinkle ’02, Pretorius ’05 Constraint preservation; constraint satisfying BCs Gundlach et al. ’05, Lindblom et al. ’06 U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/201221 / 67 Discretization of the time evolution Finite differencing (FD) Pretorius, RIT, Goddard, Georgia Tech, LEAN, BAM, UIUC,... Spectral Caltech-Cornell-CITA Parallelization with MPI, ∼ 128 cores, ∼ 256 Gb RAM Example: advection equation @t f = @x f , FD n Array fk for fixed n n n n+1 n fk+1−fk−1 fk = fk + ∆t 2∆x U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/201222 / 67 Initial data Two problems: Constraints, realistic data Rearrange degrees of freedom 4 York-Lichnerowicz split: γij = γ~ij 1 Kij = Aij + 3 γij K York & Lichnerozwicz, O’Murchadha & York, Wilson & Mathews, York Make simplifying assumptions Conformal flatness: γ~ij = δij Find good elliptic solvers, e. g. Ansorg et al. ’04 U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/201223 / 67 Mesh refinement 3 Length scales : BH ∼ 1 M Wavelength ∼ 10:::100 M Wave zone ∼ 100:::1000 M Critical phenomena Choptuik ’93 First used for BBHs Brügmann ’96 Available Packages: Paramesh MacNeice et al. ’00 Carpet Schnetter et al. ’03 SAMRAI MacNeice et al. ’00 U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/201224 / 67 The gauge freedom Remember: Einstein equations say nothing about α; βi Any choice of lapse and shift gives a solution This represents the coordinate freedom of GR Physics do not depend on α; βi So why bother? The performance of the numerics DO depend strongly on the gauge! How do we get good gauge? Singularity avoidance, avoid coordinate stretching, well posedness U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/201225 / 67 What goes wrong with bad gauge? U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology19/07/2012 and Computational 26 / 67 Framework What goes wrong with bad gauge? U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology19/07/2012 and Computational 27 / 67 Framework What goes wrong with bad gauge? U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology19/07/2012 and Computational 28 / 67 Framework What goes wrong with bad gauge? U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology19/07/2012 and Computational 29 / 67 Framework A brief history of BH simulations Pioneers: Hahn & Lindquist ’60s, Eppley, Smarr et al. ’70s Grand Challenge: First3 D Code Anninos et al. ’90s Further attempts: Bona & Massó, Pitt-PSU-Texas AEI-Potsdam, Alcubierre et al. PSU: first orbit Brügmann et al. ’04 Codes unstable! Breakthrough:

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    67 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us