Unique Probe Mapping Met Behulp Van PQ-Trees

Unique Probe Mapping Met Behulp Van PQ-Trees

Computational Molecular Biology Unique Probe Mapping met behulp van PQ-trees Leiden, 6 april 2006 Hendrik Jan Hoogeboom Algorithms / Fundamentele Informatica www.liacs.nl/home/hoogeboo/ feb’01 - human genome genetic / physical map physical mapping 108 bp C: Full DNA Physical mapping Cut C and clone into overlapping Physical 106 bp YAC clones. mapping Cut the DNA in each YAC clone and clone into overlapping cosmid clones. 104 bp Select a subset of cosmid clones of minimum total length that covers the YAC DNA. Fragment assembling Duplicate the cosmid and then cut the copies randomly. Select and sequence short fragments and then reassemble them into a deduced cosmid string. 102 bp using a map of the genome m u j a e i x f z d w m u z d hybridization mapping Clones y x z w Probes unique probe mapping e b o r 3 clone p 4 clones 1,2,…,6 2 6 probes A,B,…,G 1 5 E B F C A G D A B C D E F G matrix representation 1 1 1 2 1 1 3 1 1 1 1 4 1 1 5 1 1 1 6 1 1 reordering of probes ordering e b o D G C A F B E r 3 clone p 1 1 1 4 2 2 1 1 6 3 1 1 1 1 1 5 4 1 1 5 1 1 1 6 1 1 E B F C A G D A B C D E F G clones contain 1 1 1 2 1 1 consecutive probes 3 1 1 1 1 4 1 1 5 1 1 1 6 1 1 interval graphs e b o r 3 clone p 4 5 2 6 1 2 3 6 1 5 4 E B F C A G D A B C D E F G matrix representation 1 1 1 2 1 1 3 1 1 1 1 4 1 1 5 1 1 1 6 1 1 thur 16 ^ 0 1 ¬ 0 1 mon tues 1 A 7 12 v 0 1 D fri sat wed 5 6 10 2 2 3 B C sun expressie code binaire zoek 4 2 heap sat tues c s expr expr term e * fri mon wed a a term term* fact sun thur t e fact r t a fact b a a l k trie syntax 2,3 boom BOMEN PQ-trees representation for permutations P Q 1 2 3 1 2 3 { 123, 132, 213, 231, 312, 321 } { 123, 321 } PQ-trees datastructure to represent all possibilities P Q (k≥2) (k≥3) T1 Tk T1 Tk P permutation Q linear order PQ trees represent possible reorderings (permutations of probes) example 2 A B C D E 1 1 1 1 1 D A C B E 2 1 1 1 1 clones { A, C, D } { A, B, C, E } 1 2 D AC BE D AC BE EB CA D D CA BE EB AC D D AC EB BE CA D D A C B E D CA EB BE AC D PQ-trees equivalent representations P Q 1 2 3 1 2 3 reorder mirror P Q 3 1 2 3 2 1 { 123, 132, 213, 231, 312, 321 } { 123, 321 } PQ-tree algorithm reduce(T,S) T PQ tree ~ set of permutations S new clone ~ set of (consecutive) probes add requirement S to tree T ‘keep S together’ • colour leaves in S • apply transformations to get consecutive leaves • apply replacement rules to add new restriction to tree P all leaves in S Q segment in S example A B C D E F B A C E D F B A C E D F S = {A,C,E} ‘root’ no coloured nodes outside this subtree B A C E D F B A C E D F B A C E D F replacement rules replacement rules (2,3) root root (2) … … … … … non-root (3) … … replacement rules (4,5) root … … (4) … … … … … … non-root (5) … … … … references K.S. Booth and G.S. Leuker. Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. JCSS 13:335-379, 1976. also 7th STOC, 1975. challenges • find the right model (simplification) ° noise, errors, too much / not enough data ° heuristics & AI approach ° is it data mining? • interdisciplinary.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    21 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us