
DEVELOPMENT AND MODEL FORMULATION OF SCALABLE CARBON NANOTUBE PROCESSES: HiPCO AND CoMoCAT PROCESS MODELS A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in Chemical Engineering in The Department of Chemical Engineering Adedeji Ebenezer Agboola B.Sc., Obafemi Awolowo University, Nigeria, 1998 M.S., Louisiana State University, 2005 December, 2005 ACKNOWLEDGEMENTS I wish to express my sincere appreciation to my research advisor, Professor Ralph W. Pike, for his technical guidance and support during the course of this research work. His assistance and suggestions were crucial in the realization of this work. I would also like to thank Dr Armando Corripio and Dr F. Carl Knopf for being a part of my examination committee, and recognize their efforts in reviewing and evaluating this research. In addition, I would like to acknowledge and thank the Chemical Engineering Department at Louisiana State University for providing the opportunity and the financial wherewithal to accomplish my goals at LSU. This research work is dedicated to my mother and siblings for their support, prayers, encouragement and love. Thank you for being a part of my life. Graduate studies in the department have been a rewarding, satisfying and fulfilling experience. However, as much as the graduate school experience was rewarding, it is the people I met and interacted with: family, friends, colleagues, faculty, and others that made the whole journey worthwhile. Thank you for being a part of my experience at LSU. “It takes the Grace of God.....and a Good Heart to be a Blessing” ii TABLE OF CONTENTS ACKNOWLEGEMENTS……………………………………………………………….ii LIST OF TABLES………………………………………………………………………vi LIST OF FIGURES…………………………………………………………………….xii ABSTRACT……………………………………………………………………………xvii CHAPTER ONE: INTRODUCTION……………………………………...………........1 1.1 Overview…………………………………………………………………………...3 1.2 Structure……………………………………………………………………............5 1.3 Properties………………………………………………………………….............10 1.3.1 Electronic Properties…………………………………………………...........11 1.3.2 Mechanical Properties……………………………………………….............12 1.3.3 Chemical Reactivity…………………………………………………............13 1.4 Applications...……………………………………………………………………...14 1.4.1 Energy Storage……………………………………………………….............14 1.4.1a Hydrogen Storage……………………………………………….….....15 1.4.1b Lithium Intercalation…………………………………………….........15 1.4.1c Electrochemical Supercapacitors and Actuators………………............17 1.4.2 Carbon Nanotube Based Electronics……………………………………….....18 1.4.2a Molecular Junctions…………………………………………………...18 1.4.2b Field Effect Transistors…………………………………………….....19 1.4.3 Field Emitting Devices………………………………………………..............21 1.4.4 Nanoprobes……………………………………………………………............22 1.4.5 Nanosensors…………………………………………………………………...23 1.4.6 Nanotube Composites……………………………………………………........24 1.4.7 Nanotube Templates………………………………………………………......25 1.5 Production Cost and Future Outlook……………………………………………......25 1.6 Summary ……………………………………………………………………….......29 CHAPTER TWO: LITERATURE REVIEW………………………………………….33 2.1 Carbon Nanotube Synthesis ………………………………………………….........33 2.1.1 Electric Arc Discharge ………………………………………………………34 2.1.2 Laser Vaporization ..........................................................................................37 2.1.3 Chemical Vapor Deposition ………………………………………………...38 2.1.3a Thermal Chemical Vapor Deposition ……………………………….40 2.1.3b Plasma Enhanced Chemical Vapor Deposition ………………….….41 2.1.4 Electrolysis Technique ……………………………………………………...42 2.1.5 Solar Production of Carbon Nanotubes ……………………………………..44 2.2 Growth Mechanism …………………………………………………………….….45 2.3 Carbon Nanotube Processes ……………………………………………………….49 2.4 Evaluation of Synthesis Methods …………………………………………….........73 iii 2.5 Purification of Carbon Nanotubes ………………………………………………….83 2.5.1 Oxidation …………………………………………………………………….83 2.5.2 Acid Treatment ………………………………………………………………88 2.5.3 Ultrasonication ………………………………………………………………89 2.5.4 Mechanical Purification ………………………………………………..........90 2.5.5 Functionalization …………………………………………………….............91 2.5.6 Microfiltration …………………………………………………………….....92 2.5.7 Chromatography ……………………………………………………………..93 2.6 Evaluation of the Purification Methods …………………………………………...95 2.7 Summary ……………………………………………………………………..........95 CHAPTER THREE: PROCESS MODEL DEVELOPMENT AND FORMULATION…….………………………………………....99 3.1 Process Model Development ……………………………………………………..100 3.2 Description of HiPCO Carbon Nanotube Process ………………………………..102 3.2.1 Feed Preparation Section ……………………………………………….......102 3.2.2 Reactor Section ……………………………………………………………..106 3.2.3 Separation/Purification Section ……………………………………….........109 3.2.4 Absorber Section ……………………………………………………….......111 3.3 Model for HiPCO Carbon Nanotube Process ………………………………........113 3.3.1 Heat Exchanger Network ………………………………………………......113 3.3.2 Reactor Section ………………………………………………………….....115 3.3.3 Separation/Purification Zone….……………………………………….........120 3.4 Description of CoMoCAT Carbon Nanotube Process …………………………...126 3.4.1 Feed Preparation Section …………………………………………………...126 3.4.2 Reactor Section ………………………………………………………….....130 3.4.3 Absorber Section ……………………………………………………..........132 3.4.4 Separation/Purification Section …………………..……………………......133 3.5 Model for CoMoCAT Carbon Nanotube Process …………..…………………...136 3.5.1 Heat Exchanger Network ……………………………………………….....137 3.5.2 Reaction Section …………………………………………………………...138 3.5.3 Separation/Purification Section …………………………………………....141 3.5.4 Absorption Section …………………………………………………….…..146 3.6 Summary ……………………………………………………………………........148 CHAPTER FOUR: RESULTS FROM ANALYSIS OF HiPCO AND CoMoCAT PROCESS MODELS ..............................................150 4.1 Analysis of HiPCO Process Model …………………………………………..…..150 4.2 Analysis of CoMoCAT Process Model ……………………………………….....170 4.3 Summary …………………………………………………………………............194 CHAPTER FIVE: ECONOMIC ANALYSIS OF HiPCO AND CoMoCAT PROCESS MODELS ................................................198 5.1 Economic Decision Analysis …………………..……………………………….....198 5.1.1 Total Plant Costs …………………………..……………………………......199 iv 5.1.2 Total Product Costs …………………………………………………….....205 5.2 Profitability Analysis ………………………………………................................214 5.3 Comparison of Energy Consumption and Emissions from HiPCO and CoMoCAT Processes …………………………………………………….....219 5.4 Summary ………………………………………………………………………...222 CHAPTER SIX: CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH …………...…………….…….. 225 6.1 Conclusions ……………………………………………….………………….…226 6.2 Recommendations for Future Research …………….…………………………...229 REFERENCES……………………………………………………………………......231 APPENDIX A: THERMODYNAMIC DATA OF PROCESS STREAMS.............240 APPENDIX B: MATERIAL AND ENERGY BALANCE EQUATIONS………...246 APPENDIX C: ANALYSIS OF HiPCO AND CoMoCAT PROCESS MODELS …………………………………………………………....289 APPENDIX D: SAMPLE CALCULATION COST ESTIMATES……...…………400 VITA…………………………………………………………………………......……..406 v LIST OF TABLES 1.1 Production – Cost Estimates for MWNT as–grown for a High and Low Cost Scenario ……………………………………………………......26 1.2 Companies Producing Carbon Nanotubes and their Product Prices ………………...30 2.1 Arc – Discharge Synthesis Processes …………………………………………….....74 2.2 Laser Vaporization Synthesis Processes ……………………………………………75 2.3 Chemical Vapor Deposition (CVD) Synthesis Processes ………………………......76 2.4 Other Synthesis Methods ……………………………………………………............78 2.5 Companies Making Equipments for Carbon Nanotube Synthesis ……………….....98 3.1 Production Capacity for Carbon Fiber Facilities ……………………………….....100 3.2 Process Units for the Carbon Nanotube HiPCO Process Model ………………….104 3.3 Process Streams in the HiPCO Process Model ……………………………………105 3.4 Material and Energy Balance Equations for Reactor Gas Effluent – Feed Recycle Cross Heat Exchanger (E–102) ………………………………………....116 3.5 Material and Energy Balance Equations for the Reactor (V–102) ………………..119 3.6 Material and Energy Balance Equations for Gas–Solid Filter (Z–101) …………..122 3.7 Material and Energy Balance Equations for Gas Absorption Column (T–101) ......125 3.8 Process Units for CoMoCAT Process Model ....................................................…..128 3.9 Process Streams in the CoMoCAT Process Model ....…………...………………...129 3.10 Material and Energy Balance Equations for Waste Heat Boiler (E–202)………...139 3.11 Material and Energy Balance Equations for Fluidized Bed Reactor (V–201)…………………..........................................................................142 3.12 Standard Cyclone Proportions.…………………………..………………………..143 3.13 Material and Energy Balance Equations for Cyclone Separator (Z – 201)…….....144 vi 3.14 Material and Energy Balance Equations for Froth Flotation Column (T–203)…...145 3.15 Material and Energy Balance Equations for Gas Absorption Column (T–201)…..147 3.16 Material and Energy Balance Equations for Gas Stripping Column (T–202)…….148 4.1. Process Units for the Carbon Nanotube HiPCO Process Model …………………..153 4.2. Preliminary Equipment Summary Table for HiPCO Process Model ……………...154 4.3. Flow Summary Table for HiPCO Process Model …………………………………162 4.4. Utility Flow Summary Table for HiPCO Process Model ………………….............167 4.5. Process Units for the CoMoCAT Process Model ……………………………….....174 4.6. Preliminary Equipment Summary Table for CoMoCAT Process Model ……….....176 4.7. Flow Summary Table for CoMoCAT Process Model ……………………………..185
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages424 Page
-
File Size-