LIGO SCIENTIFIC COLLABORATION VIRGO COLLABORATION Document Type LIGO–T1100322 VIR-0353A-11 The LSC-Virgo white paper on gravitational wave data analysis Science goals, status and plans, priorities (2011–2012 edition) The LSC-Virgo Data Analysis Working Groups, the Data Analysis Software Working Group, the Detector Characterization Working Group and the Computing Committee WWW: http://www.ligo.org/ and http://www.virgo.infn.it Processed with LATEX on 2011/10/13 LSC-Virgo data analysis white paper Contents 1 Introduction 6 2 The characterization of the data 8 2.1 LSC-Virgo-wide detector characterization priorities . .8 2.2 LIGO Detector Characterization . .9 2.2.1 Introduction . .9 2.2.2 Preparing for the Advanced Detector Era . 10 2.2.3 Priorities for LIGO Detector Characterization . 11 2.2.4 Data Run Support . 11 2.2.5 Software Infrastructure . 12 2.2.6 Noise Transients . 14 2.2.7 Spectral Features . 15 2.2.8 Calibration . 16 2.2.9 Timing . 17 2.3 GEO Detector Characterization . 18 2.3.1 Introduction . 18 2.3.2 Transient Studies . 19 2.3.3 Stationary Studies . 20 2.3.4 Stability Studies . 21 2.3.5 Calibration . 21 2.3.6 Resources . 22 2.4 Virgo Detector Characterization . 22 2.4.1 Introduction . 22 2.4.2 Calibration and h-reconstruction . 23 2.4.3 Environmental noise . 24 2.4.4 Virgo Data Quality and vetoes . 26 2.4.5 Monitoring Tools . 28 2.4.6 Noise monitoring tools . 29 2.4.7 The Virgo Data Base . 31 2.4.8 Virgo detector characterization next steps . 32 3 Searches for signals from compact binary coalescence 33 3.1 Science goals . 33 3.2 Gravitational waves from the coalescence of compact binary systems . 34 3.3 Rates and Astrophysical Populations . 36 3.4 Search Strategies . 36 3.4.1 Matched filtering and Signal Consistency Tests . 37 3.4.2 Low latency pipeline . 38 3.4.3 Batch Analysis pipeline . 39 3.4.4 Background estimation . 40 3.4.5 Instrumental and environmental vetoes . 41 3.4.6 Efficiency evaluation . 41 3.4.7 Pipeline of pipelines . 42 3.4.8 Externally triggered searches . 42 3.4.9 Blind analyses . 43 3.4.10 Follow-up of candidate events . 43 2 LSC-Virgo data analysis white paper 3.4.11 Interpretation of results . 44 3.5 CBC Searches and Results from LIGO S1 to S4 data . 44 3.6 CBC Search Results from LIGO S5 and Virgo VSR1 data . 45 3.7 CBC Searches with the LIGO S6 and Virgo VSR2/3 data . 46 3.7.1 Detector Characterization . 47 3.7.2 Low Mass CBC Search . 48 3.7.3 The S6 GW100916 (“Big Dog”) Blind Injection event . 48 3.7.4 High mass Inspiral–Merger–Ringdown CBC: . 50 3.7.5 Externally Triggered Searches: . 50 3.7.6 Low-latency search and EM follow-up: . 51 3.7.7 Parameter estimation . 52 3.8 Ongoing CBC Searches and Studies . 52 3.8.1 Ringdown search: . 52 3.8.2 Joint CBC-Burst IMR detection comparison: . 53 3.8.3 NINJA 2 and NR-AR: . 53 3.8.4 Sub-solar mass search . 54 3.9 CBC Group Priorities and Goals for FY2012 - before the Advanced Detector Era . 54 3.9.1 S5 and S6/VSR2/3 Analyses . 54 3.9.2 Searches “Before the Advanced detector Era” . 55 3.10 First science papers in the Advanced Detector Era . 56 3.10.1 Low mass CBC search: . 56 3.10.2 High mass CBC search: . 56 3.10.3 Low latency CBC search: . 57 3.10.4 Externally triggered CBC search: . 57 3.10.5 Milestones . 57 3.11 Science and key analysis issues in the Advanced detector era . 58 3.11.1 Analysis development required prior to first detections . 59 3.11.2 The first detections . 64 3.11.3 Analysis development for routine detections . 65 3.11.4 Computational challenges . 66 3.12 CBC Group Priorities and Goals for FY2012 - in preparation for the Advanced Detector Era 67 4 Searches for general burst signals 70 4.1 Gravitational-wave Burst Science . 71 4.1.1 Soft Gamma Repeaters (SGRs) and Anomalous X-ray Pulsars (AXPs) . 71 4.1.2 Gamma-Ray Bursts . 72 4.1.3 Core-Collapse Supernovae and Accretion Induced Collapse . 73 4.1.4 Phase-transition Induced (Mini-)Collapse of Neutron Stars . 75 4.1.5 Pulsar Glitches . 75 4.1.6 Mergers of Black Hole Binary Systems . 76 4.1.7 Cosmic (Super-)String Cusps and Kinks . 77 4.1.8 Unknown Unknowns . 77 4.2 Recent Observational Results . 77 4.3 Methods Used in Burst Searches . 79 4.3.1 Signal Extraction . 79 4.3.2 Detector Characterization . 81 4.3.3 Accidental Background Estimation . 82 4.3.4 Simulations . 83 3 LSC-Virgo data analysis white paper 4.3.5 Hardware Signal Injections . 84 4.4 Science Goals . 84 4.4.1 Search as Broadly as Possible for Gravitational Wave Bursts . 84 4.4.2 Look for GW Transients Triggered by Energetic Astrophysical Events (ExtTrig) . 85 4.4.3 Burst Parameter Estimation . 88 4.4.4 Use Knowledge of Astrophysically Plausible Signals . 90 4.4.5 Seek Confirmation of GW Candidates with Follow-up Observations . 91 4.4.6 Be Open to Alternative Theories of Gravity . 92 4.4.7 Be Prepared to Detect a GW Signal with Confidence . 93 4.5 Using Data from the Transition Era . 94 4.6 Preparing for the Advanced Detector Era . 95 5 Searches for continuous-wave signals 98 5.1 Non-accreting pulsars . 98 5.1.1 Time domain Bayesian method . 100 5.1.2 Narrowband Searches for Known Pulsars . ..
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages182 Page
-
File Size-