
Clouds and the Earth's Radiant Energy System CERES Publications for 2021 30 March 2021 Arya, V. B., Surendran, S., & Rajendran, K. (2021). On the build-up of dust aerosols and possible indirect effect during Indian summer monsoon break spells using recent satellite observations of aerosols and cloud properties. Journal of Earth System Science, 130(1), 42. https://doi.org/10.1007/s12040-020-01526-6 Biagio, C. D., Pelon, J., Blanchard, Y., Loyer, L., Hudson, S. R., Walden, V. P., Raut, J.- C., Kato, S., Mariage, V., & Granskog, M. A. (2021). Towards a better surface radiation budget analysis over sea ice in the high Arctic Ocean: A comparative study between satellite, reanalysis, and local‒scale observations. Journal of Geophysical Research: Atmospheres, (In press). https://doi.org/10.1029/2020JD032555 Bloxam, K., & Huang, Y. (2021). Radiative Relaxation Time Scales Quantified from Sudden Stratospheric Warmings. Journal of Atmospheric Sciences, 78(1), 269– 286. https://doi.org/10.1175/JAS-D-20-0015.1 Campbell, J. R., Dolinar, E. K., Lolli, S., Fochesatto, G. J., Gu, Y., Lewis, J. R., Marquis, J. W., McHardy, T. M., Ryglicki, D. R., & Welton, E. J. (2021). Cirrus Cloud Top-of-the-Atmosphere Net Daytime Forcing in the Alaskan Subarctic from Ground-Based MPLNET Monitoring. Journal of Applied Meteorology and Climatology, (In Press). https://doi.org/10.1175/JAMC-D-20-0077.1 Cesana, G. V., & Del Genio, A. D. (2021). Observational constraint on cloud feedbacks suggests moderate climate sensitivity. Nature Climate Change, 11(3), 213–218. https://doi.org/10.1038/s41558-020-00970-y Chen, S., McColl, K. A., Berg, A., & Huang, Y. (2021). Surface Flux Equilibrium Estimates of Evapotranspiration at Large Spatial Scales. Journal of Hydrometeorology, 22(4), 765–779. https://doi.org/10.1175/JHM-D-20-0204.1 Coelho, C. A. S., de Souza, D. C., Kubota, P. Y., Costa, S. M. S., Menezes, L., Guimarães, B. S., Figueroa, S. N., Bonatti, J. P., Cavalcanti, I. F. A., Sampaio, G., Klingaman, N. P., & Baker, J. C. A. (2021). Evaluation of climate simulations produced with the Brazilian global atmospheric model version 1.2. Climate Dynamics, 56(3), 873–898. https://doi.org/10.1007/s00382-020-05508-8 Dong, X., Wu, P., Wang, Y., Xi, B., & Huang, Y. (2021). New Observational Constraints on Warm Rain Processes and Their Climate Implications. Geophysical Research Letters, 48(6), e2020GL091836. https://doi.org/10.1029/2020GL091836 Feldman, D. R., Su, W., & Minnis, P. (2021). Subdiurnal to Interannual Frequency Analysis of Observed and Modeled Reflected Shortwave Radiation From Earth. Geophysical Research Letters, 48(4), e2020GL089221. https://doi.org/10.1029/2020GL089221 Gasparini, B., Rasch, P. J., Hartmann, D. L., Wall, C. J., & Dütsch, M. (2021). A Lagrangian Perspective on Tropical Anvil Cloud Lifecycle in Present and Future Climate. Journal of Geophysical Research: Atmospheres, 126(4), e2020JD033487. https://doi.org/10.1029/2020JD033487 Gettelman, A., Gagne, D. J., Chen, C.-C., Christensen, M. W., Lebo, Z. J., Morrison, H., & Gantos, G. (2021). Machine Learning the Warm Rain Process. Journal of Advances in Modeling Earth Systems, 13(2), e2020MS002268. https://doi.org/10.1029/2020MS002268 Guigma, K. H., Guichard, F., Todd, M., Peyrille, P., & Wang, Y. (2021). Atmospheric tropical modes are important drivers of Sahelian springtime heatwaves. Climate Dynamics, 56(5), 1967–1987. https://doi.org/10.1007/s00382-020-05569-9 Henry, M., Merlis, T. M., Lutsko, N. J., & Rose, B. E. J. (2021). Decomposing the Drivers of Polar Amplification with a Single-Column Model. Journal of Climate, 34(6), 2355–2365. https://doi.org/10.1175/JCLI-D-20-0178.1 Hourdin, F., Williamson, D., Rio, C., Couvreux, F., Roehrig, R., Villefranque, N., Musat, I., Fairhead, L., Diallo, F. B., & Volodina, V. (2021). Process-based climate model development harnessing machine learning: II. model calibration from single column to global. Journal of Advances in Modeling Earth Systems, (In Press). https://doi.org/10.1029/2020MS002225 Huang, H., Huang, Y., & Hu, Y. (2021). Quantifying the energetic feedbacks in ENSO. Climate Dynamics, 56(1), 139–153. https://doi.org/10.1007/s00382-020-05469-y Huang, Y., Ding, Q., Dong, X., Xi, B., & Baxter, I. (2021). Summertime low clouds mediate the impact of the large-scale circulation on Arctic sea ice. Communications Earth & Environment, 2(1), 1–10. https://doi.org/10.1038/s43247-021-00114-w Huang, Y., Dong, X., Kay, J. E., Xi, B., & McIlhattan, E. A. (2021). The climate response to increased cloud liquid water over the Arctic in CESM1: A sensitivity study of Wegener–Bergeron–Findeisen process. Climate Dynamics. https://doi.org/10.1007/s00382-021-05648-5 Itterly, K., Taylor, P., & Roberts, J. B. (2021). Satellite Perspectives of Sea Surface Temperature Diurnal Warming on Atmospheric Moistening and Radiative Heating During MJO. Journal of Climate, (In Press). https://doi.org/10.1175/JCLI-D-20-0350.1 Jian, B., Li, J., Wang, G., Zhao, Y., Li, Y., Wang, J., Zhang, M., & Huang, J. (2021). Evaluation of the CMIP6 marine subtropical stratocumulus cloud albedo and its controlling factors. Atmospheric Chemistry and Physics Discussions, 1–29. https://doi.org/10.5194/acp-2020-1245 Joseph, J., Girishkumar, M. S., McPhaden, M. J., & Rao, E. P. R. (2021). Diurnal variability of atmospheric cold pool events and associated air-sea interactions in the Bay of Bengal during the summer monsoon. Climate Dynamics, 56(3), 837– 853. https://doi.org/10.1007/s00382-020-05506-w Joseph, J., Girishkumar, M. S., Varikoden, H., Thangaprakash, V. P., Shivaprasad, S., & Rama Rao, E. P. (2021). Observed sub-daily variability of latent and sensible heat fluxes in the Bay of Bengal during the summer. Climate Dynamics, 56(3), 917– 934. https://doi.org/10.1007/s00382-020-05512-y Kang, L., Marchand, R., & Smith, W. (2021). Evaluation of MODIS and Himawari-8 Low Clouds Retrievals Over the Southern Ocean With In Situ Measurements From the SOCRATES Campaign. Earth and Space Science, 8(3), e2020EA001397. https://doi.org/10.1029/2020EA001397 Kramer, R. J., He, H., Soden, B. J., Oreopoulos, L., Myhre, G., Forster, P. M., & Smith, C. J. (n.d.). Observational evidence of increasing global radiative forcing. Geophysical Research Letters, n/a(n/a), e2020GL091585. https://doi.org/10.1029/2020GL091585 Lang, S. T. K., Lock, S.-J., Leutbecher, M., Bechtold, P., & Forbes, R. M. (2021). Revision of the Stochastically Perturbed Parametrisations model uncertainty scheme in the Integrated Forecasting System. Quarterly Journal of the Royal Meteorological Society, 147(735), 1364–1381. https://doi.org/10.1002/qj.3978 Liang, S., Cheng, J., Jia, K., Jiang, B., Liu, Q., Xiao, Z., Yao, Y., Yuan, W., Zhang, X., Zhao, X., & Zhou, J. (2021). The Global LAnd Surface Satellite (GLASS) product suite. Bulletin of the American Meteorological Society, (In Press). https://doi.org/10.1175/BAMS-D-18-0341.1 Loeb, N. G., Su, W., Bellouin, N., & Ming, Y. (2021). Changes in Clear-Sky Shortwave Aerosol Direct Radiative Effects Since 2002. Journal of Geophysical Research: Atmospheres, 126(5), e2020JD034090. https://doi.org/10.1029/2020JD034090 Ma, Q., You, Q., Ma, Y., Cao, Y., Zhang, J., Niu, M., & Zhang, Y. (2021). Changes in cloud amount over the Tibetan Plateau and impacts of large-scale circulation. Atmospheric Research, 249, 105332. https://doi.org/10.1016/j.atmosres.2020.105332 Mackie, A., Brindley, H. E., & Palmer, P. I. (n.d.). Contrasting observed atmospheric responses to tropical SST warming patterns. Journal of Geophysical Research: Atmospheres, n/a(n/a), e2020JD033564. https://doi.org/10.1029/2020JD033564 Marcianesi, F., Aulicino, G., & Wadhams, P. (2021). Arctic sea ice and snow cover albedo variability and trends during the last three decades. Polar Science, (In Press). https://doi.org/10.1016/j.polar.2020.100617 Matthews, G. (2021, June 1). New satellite results further confirming that Earth reflectivity changes are not driving Global Warming (world) [Preprint]. Earth and Space Science Open Archive; Earth and Space Science Open Archive. https://doi.org/10.1002/essoar.10505708.1 Ming, Y., Loeb, N. G., Lin, P., Shen, Z., Naik, V., Singer, C. E., Ward, R. X., Paulot, F., Zhang, Z., Bellouin, N., Horowitz, L. W., Ginoux, P. A., & Ramaswamy, V. (2021). Assessing the Influence of COVID-19 on the Shortwave Radiative Fluxes Over the East Asian Marginal Seas. Geophysical Research Letters, 48(3), e2020GL091699. https://doi.org/10.1029/2020GL091699 Nga, P. T. T., Ha, P. T., & Hang, V. T. (2021). Satellite-Based Regionalization of Solar Irradiation in Vietnam by k-Means Clustering. Journal of Applied Meteorology and Climatology, 60(3), 391–402. https://doi.org/10.1175/JAMC-D-20-0070.1 Obregón, M. Á., Serrano, A., Costa, M. J., & Silva, A. M. (2021). Global Spatial and Temporal Variation of the Combined Effect of Aerosol and Water Vapour on Solar Radiation. Remote Sensing, 13(4), 708. https://doi.org/10.3390/rs13040708 Painemal, D., Corral, A. F., Sorooshian, A., Brunke, M. A., Chellappan, S., Gorooh, V. A., Ham, S.-H., O’Neill, L., Smith, W. L., Tselioudis, G., Wang, H., Zeng, X., & Zuidema, P. (2021). An Overview of Atmospheric Features Over the Western North Atlantic Ocean and North American East Coast—Part 2: Circulation, Boundary Layer, and Clouds. Journal of Geophysical Research: Atmospheres, 126(6), e2020JD033423. https://doi.org/10.1029/2020JD033423 Renner, M., Kleidon, A., Clark, M., Nijssen, B., Heidkamp, M., Best, M., & Abramowitz, G. (2021). How well can land-surface models represent the diurnal cycle of turbulent heat fluxes? Journal of Hydrometeorology, 22(1), 77–94. https://doi.org/10.1175/JHM-D-20-0034.1 Ridout, J. A., Barton, N. P., Janiga, M. A., Reynolds, C. A., May, J. C., Rowley, C., & Bishop, C. H. (2021). Surface Radiative Flux Bias Reduction through Regionally Varying Cloud Fraction Parameter Nudging in a Global Coupled Forecast System.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages251 Page
-
File Size-