Bibliography

Bibliography

Bibliography [1] G.E. Albert, Anoteonquasi-metricspaces, Bull. Amer. Math. Soc. 47 (1941), 479–482. [2] C. Alegre, Continuous operators on asymmetric normed spaces,ActaMath. Hungar. 122 (2009), no. 4, 357–372. [3] C. Alegre and I. Ferrando, Quotient subspaces of asymmetric normed linear spaces, Bol. Soc. Mat. Mexicana (3) 13 (2007), no. 2, 357–365. [4] C. Alegre, I. Ferrando, L.M. Garc´ıa-Raffi, and E.A. S´anchez P´erez, Com- pactness in asymmetric normed spaces, Topology Appl. 155 (2008), no. 6, 527–539. [5] C. Alegre, J. Ferrer, and V. Gregori, Quasi-uniformities on real vector spaces, Indian J. Pure Appl. Math. 28 (1997), no. 7, 929–937. [6] , On a class of real normed lattices,CzechoslovakMath.J.48(123) (1998), no. 4, 785–792. [7] , On pairwise Baire bitopological spaces, Publ. Math. Debrecen 55 (1999), no. 1–2, 3–15. [8] , On the Hahn-Banach theorem in certain linear quasi-uniform struc- tures, Acta Math. Hungar. 82 (1999), no. 4, 325–330. [9] E. Alemany and S. Romaguera, On half-completion and bicompletion of quasi-metric spaces, Comment. Math. Univ. Carolin. 37 (1996), no. 4, 749– 756. [10] , On right -sequentially complete quasi-metric spaces,ActaMath. Hungar. 75 (1997), no. 3, 267–278. [11] A.R. Alimov, The Banach-Mazur theorem for spaces with nonsymmetric dis- tance, Uspekhi Mat. Nauk 58 (2003), no. 2, 159–160. [12] , Convexity of Chebyshev sets in a subspace, (Russian) Mat. Zametki 78 (2005), no. 1, 3–15; translation in Math. Notes 78 (2005), no. 1–2, 3–13. [13] A. Andrikopoulos, Completeness in quasi-uniform spaces, Acta Math. Hun- gar. 105 (2004), no. 1–2, 151–173. [14] , A larger class than the De´ak one for the coincidence of some no- tions of quasi-uniform completeness using pairs of filters, Studia Sci. Math. Hungar. 41 (2004), no. 4, 431–436. ù. Cobzaú, Functional Analysis in Asymmetric Normed Spaces, Frontiers in Mathematics, 201 DOI 10.1007/978-3-0348-0478-3, © Springer Basel 2013 202 Bibliography [15] J.A. Antonino and S. Romaguera, Equinormal metrics and upper semi- continuity, Math. Jap. 36 (1991), No.1, 147–151. [16] E. Asplund, Cebyˇˇ sev sets in Hilbert space, Trans. Amer. Math. Soc. 144 (1969), 235–240. [17] V.F. Babenko, Nonsymmetric approximations in spaces of summable func- tions,Ukrain.Mat.Zh.34 (1982), no. 4, 409–416. [18] , Nonsymmetric extremal problems of approximation theory,Dokl. Akad. Nauk SSSR 269 (1983), no. 3, 521–524. [19] , Duality theorems for certain problems of the theory of approxima- tion, Current problems in real and complex analysis, Akad. Nauk Ukrain. SSR Inst. Mat., Kiev, 1984, pp. 3–13. [20] V.S. Balaganskii and L.P. Vlasov, The problem of the convexity of Chebyshev sets, Uspekhi Mat. Nauk 51 (1996), no. 6(312), 125–188. [21] H.L Bentley, H. Herrlich, and W.N. Hunsaker, A Baire category theorem for quasi-metric spaces, Indian J. Math. 37 (1995), no. 1, 27–30 [22] T. Bˆırsan, Sur les espaces bitopologiques connexes,An.S¸ti. Univ. “Al. I. Cuza” Ia¸si Sect¸. I a Mat. (N.S.) 14 (1968), 293–296. [23] , Compacit´e dans les espaces bitopologiques,An.S¸ti. Univ. “Al. I. Cuza” Ia¸si Sect¸. I a Mat. (N.S.) 15 (1969), 317–328. [24] , Sur les espaces bitopologiques compl`etement r´eguliers,An.S¸ti. Univ. “Al. I. Cuza” Ia¸si Sect¸. I a Mat. (N.S.) 16 (1970), 29–34. [25] , Contribution `al’´etude des groupes bitopologiques,An.S¸ti. Univ. “Al. I. Cuza” Ia¸si Sect¸. I a Mat. (N.S.) 19 (1973), no. 2, 297–310. [26] , Transitive quasi-uniformities and zero-dimensional bitopological spaces,An.S¸ti.Univ.“Al.I.Cuza”Ia¸si Sect¸. I a Mat. (N.S.) 20 (1974), no. 2, 317–322. [27] S. Bodjanov´a, Some basic notions of mathematical analysis in oriented met- ric spaces, Math. Slovaca 31 (1981), no. 3, 277–289. [28] P.A. Borodin, The Banach-Mazur theorem for spaces with an asymmetric norm and its applications in convex analysis, Mat. Zametki 69 (2001), no. 3, 329–337. [29] M.K. Bose, A.R. Choudhury, and A. Mukharjee, On bitopological paracom- pactness,Mat.Vesnik60 (2008), no. 4, 255–259. [30] G. Buskes, The Hahn-Banach theorem surveyed, Dissertationes Math. (Rozprawy Mat.) 327 (1993), 49 pp. [31] J.W. Carlson and T.L. Hicks, On completeness in quasi-uniform spaces,J. Math. Anal. Appl. 34 (1971), 618–627. [32] S.B. Chen, G. Tan and Z. Mao, On convergence in quasi-metric spaces,J. Wuhan Univ. Sci. and Techn. (Natural Science Ed.) 28 (2005), no. 4. Bibliography 203 [33] S.A. Chen, W. Li, S.P. Tian and Z.Y. Mao, On optimization problems in quasi-metric spaces, Proc. 5th International Conf. on Machine Learning and Cybernetics, Dalian, 13–16 Aug. 2006, p. 865–870. [34] S. Chen, S. Tian and Z. Mao, On Caristi’s fixed point theorem in quasi- metric spaces, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 13A (2006), Part 3, suppl., 1150–1157. [35] S.A. Chen, W. Li, D. Zou and S.B. Chen, Fixed point theorems in quasi- metric spaces, Proc. 6th International Conf. on Machine Learning and Cy- bernetics, Hong Kong, 19–22 Aug. 2007, pp. 2499–2504. [36] I. Cior˘anescu, Geometry of Banach spaces, Duality mappings and nonlinear problems, Kluwer Academic Publishers, Dordrecht, 1990. [37] S. Cobza¸s, On a theorem of V.N. Nikolski on characterization of best ap- proximation for convex sets,Anal.Num´er. Th´eor. Approx. 19 (1990), no. 1, 7–13. [38] , Some remarks on the characterization of nearest points, Studia Univ. Babe¸s-Bolyai, Math. 35 (1990), no. 2, 54–56. [39] , Phelps type duality results in best approximation,Rev.Anal.Num´er. Th´eor. Approx. 31 (2002), no. 1, 29–43. [40] , Separation of convex sets and best approximation in spaces with asymmetric norm, Quaest. Math. 27 (2004), no. 3, 275–296. [41] , Asymmetric locally convex spaces, Int. J. Math. Math. Sci. (2005), no. 16, 2585–2608. [42] , Geometric properties of Banach spaces and the existence of nearest and farthest points, Abstr. Appl. Anal. (2005), no. 3, 259–285. [43] , Compact operators on spaces with asymmetric norm, Stud. Univ. Babe¸s-Bolyai Math. 51 (2006), no. 4, 69–87. [44] , Compact and precompact sets in asymmetric locally convex spaces, Topology Appl. 156 (2009), no. 9, 1620–1629. [45] , Functional analysis in asymmetric normed spaces, arXiv:1006.1175v1 (2010). [46] , Completeness in quasi-metric spaces and Ekeland variational prin- ciple, Topology Appl. 158 (2011), no. 8, 1073–1084. [47] S. Cobza¸s and I. Muntean, Duality relations and characterizations of best approximation for -convex sets,Anal.Num´er. Th´eor. Approx. 16 (1987), no. 2, 95–108. [48] S. Cobza¸s and C. Must˘at¸a, Extension of bounded linear functionals and best approximation in spaces with asymmetric norm,Rev.Anal.Num´er. Th´eor. Approx. 33 (2004), no. 1, 39–50. [49] , Best approximation in spaces with asymmetric norm,Rev.Anal. Num´er. Th´eor. Approx. 35 (2006), no. 1, 17–31. 204 Bibliography [50] J. Collins and J. Zimmer, An asymmetric Arzel`a-Ascoli theorem, Topology Appl. 154 (2007), no. 11, 2312–2322. [51] J.J. Conradie and M.D. Mabula, Convergence and left-K-sequential com- pleteness in asymmetrically normed lattices, Acta Math. Hungar. (accepted). [52] I.E. Cooke and I.L. Reilly, On bitopological compactness, J. London Math. Soc. (2) 9 (1974/75), 518–522. [53] M.C. Datta, Projective bitopological spaces, J. Austral. Math. Soc. 13 (1972), 327–334. [54] , Projective bitopological spaces.II ,J.Austral.Math.Soc.14 (1972), 119–128. [55] , Paracompactness in bitopological spaces and an application to quasi- metric spaces, Indian J. Pure Appl. Math. 8 (1977), no. 6, 685–690. [56] J. De´ak, On the coincidence of some notions of quasi-uniform completeness defined by filter pairs, Studia Sci. Math. Hungar. 26 (1991), no. 4, 411–413. [57] , A bitopological view of quasi-uniform completeness.I, II , Studia Sci. Math. Hungar. 30 (1995), no. 3–4, 389–409, 411–431. [58] , A bitopological view of quasi-uniform completeness.III , Studia Sci. Math. Hungar. 31 (1996), no. 4, 385–404. [59] F.S. De Blasi and J. Myjak, On a generalized best approximation problem, J. Approx. Theory 94 (1998), no. 1, 54–72. [60] A. Di Concilio, Spazi quasimetrici e topologie ad essi associate (Italian), Rend. Accad. Sci. Fis. Mat., IV. Ser., Napoli 38 (1971), 113–130 (1972). [61] D. Doitchinov, On completeness of quasi-uniform spaces,C.R.Acad.Bul- gare Sci. 41 (1988), no. 7, 5–8. [62] , Completeness and completions of quasi-metric spaces, Rend. Circ. Mat. Palermo (2) Suppl. (1988), no. 18, 41–50, Third National Conference on Topology (Trieste, 1986). [63] , On completeness in quasi-metric spaces, Topology Appl. 30 (1988), no. 2, 127–148. [64] , Cauchy sequences and completeness in quasi-metric spaces, Pliska Stud. Math. Bulgar. 11 (1991), 27–34. [65] , A concept of completeness of quasi-uniform spaces, Topology Appl. 38 (1991), no. 3, 205–217. [66] , Completeness and completion of quasi-uniform spaces, Trudy Mat. Inst. Steklov. 193 (1992), 103–107. [67] E.P. Dolzhenko and E.A. Sevastyanov, Approximations with a sign-sensitive weight (existence and uniqueness theorems), Izv. Ross. Akad. Nauk Ser. Mat. 62 (1998), no. 6, 59–102. [68] , Sign-sensitive approximations, J. Math. Sci. (New York) 91 (1998), no. 5, 3205–3257, Analysis, 10. Bibliography 205 [69] , Approximation with a sign-sensitive weight (stability, applications to snake theory and Hausdorff approximations), Izv. Ross.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    19 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us