Discrete Fourier and Wavelet Transforms: Mathematical Microscopes for Signal Processing

Discrete Fourier and Wavelet Transforms: Mathematical Microscopes for Signal Processing

Discrete Fourier and Wavelet Transforms: Mathematical Microscopes for Signal Processing Roe Goodman Rutgers Math Club October 15, 2014 Roe Goodman Discrete Fourier and Wavelet Transforms Continuous (calculus) to Discrete (linear algebra) analog signal f (t)(a ≤ t ≤ b) −! digital signal v T v = Q[f (t0); f (t1);:::; f (tN−1)] Q = quantize entries (# bits) tj = a + j∆t with ∆t = (b − a)=N (sample at rate N) Sine Wave and 2−bit Quantization Sine Wave and 4−bit Quantization 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 −0.2 −0.2 −0.4 −0.4 −0.6 −0.6 −0.8 −0.8 −1 −1 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 ç more bits gives better sound but needs more memory space Linear algebra model: ∼ N digital signal ! vector in complex vector space = C Roe Goodman Discrete Fourier and Wavelet Transforms Music engraving by LilyPond 2.14.2—www.lilypond.org Periodic Discrete Signals and Transforms 2 Fix integer N ≥ 2 ` [Z=NZ] = vector space of N-periodic signals φ : Z ! C with φ(k + N) = φ(k) for all k 2 Z PN−1 inner product hφ, i = k=0 φ(k) (k)(z = complex conj.) 2 N T ` [Z=NZ] ! C by φ ! x = [φ(0); ··· ; φ(N − 1)] Transform Method N Choose invertible matrix A = [v0; ··· ; vN−1](basis for C ) ∗ ∗ −1 Let v0 ;:::; vN−1 be rows of A (dual basis) −1 T ∗ A-transform X = A x = [c0; ··· ; cN−1] , entries ck = vk x Inversion formula( ?) x = AX = c0v0 + ··· + cN−1vN−1 −1 T ∗ T Example A = A (Orthonormal basis) () vk = v k 2 2 () energy preserved: (x; x) = (X ; X ) = jc0j + ··· + jcN−1j Transform Problem Find the best transform for expanding a particular type of signal x • Large percentage of the coefficients ck in( ?) are small • Replace small ck by 0 to get compressed signalx ~ with small percentage of nonzero coefficients (good approximation to x) Roe Goodman Discrete Fourier and Wavelet Transforms Shift Operator and Sampled Waves 2 N Shift operator For φ 2 ` [Z=NZ] Sφ(k) = φ(k − 1) (S = I ) Problem Find eigenvectorsp for S Let ! = e2πi=N (i = −1) Then !N = 1 and 1; !; !2;:::;!N−1 are the solutions to zN = 1 (roots of unity) N = 8: ↑ Imaginary axis ω2 = i .................... .... ....... t.................... ....... .... .................... ................... ................... ............ ............ .......... .......... ....... ....... 2 2 3 ..... ...... 2πi/8 π π ω ..... ...... ω .....t ..... t..... = e = cos 8 + i sin 8 .... ...... .... .... ..... .... .... ..... .... ... ...... ... ... ...... ... .. ..... ... .. ...... ... .. ..... .. .. .......... 2 .. ..... .... π .. 4 . ..... ... .. 8 . ..... .. 8 . ω = −1 . ..... ω . ... =1 .t ...... .t . ...... −→ Real axis . ...... .. .. ...... .. .. ..... .. .. ..... .. .. ...... .. ... ..... .. ... ..... ... ... ..... ... .... ..... .... .... ..... .... .... ..... .... ..... ..... ..... ..... ....... 5 t..... ......t 7 ....... ....... ω ........ ......... ω ........... ........... ................... ................... .......................................................t............................... ω6 = −i kp 2 Set φp(k) = ! for k; p = 0;:::; N − 1 Then φp 2 ` [Z=NZ] φp = discrete sample of continuous wave fp (frequency p): 2πpti fp(t) = e = cos(2πpt) + i sin(2πpt)(t = k=N) ( low freq. wave when p ≈ 0 (mod N) !p ≈ 1 φp ! high freq. wave when p ≈ N=2 (mod N) !p ≈ −1 Roe Goodman Discrete Fourier and Wavelet Transforms Discrete Fourier Transform 2 Fourier Basis fφ0, φ1, ::: , φN−1g for ` [Z=NZ] −p −p • Eigenvectors for S: Sφp = ! φp (eigenvalue = ! ) ( N if p ≡ q mod N • Orthogonality: hφp; φqi = 0 else 2 Discrete Fourier transform(DFT) of φ 2 ` [Z=NZ] PN−1 −kp 2 φb(p) = hφp; φi = k=0 ! φ(k) for φ 2 ` [Z=NZ] Fourier synthesis: φ = (1=N) φb(0) φ0 + ··· + φb(N − 1) φN−1 Matrix Description (calculated by FFT \Fast Fourier Transform") N N φp ! Ep 2 C (p = 0;:::; N − 1) Fourier basis for C −(j−1)(k−1) Fourier matrix FN = [E0; ··· ; EN−1](j; k entry ! ) 2 1 1 1 1 3 6 1 −i −1 i 7 N = 4: F4 = 6 7 4 1 −1 1 −1 5 1 i −1 −i N If φ ! y 2 C then φb ! Y = FN y and y = (1=N)F N Y Roe Goodman Discrete Fourier and Wavelet Transforms Frequency Analysis Powergraph of Train Whistle Train Whistle 1 peak at 900 890 Hz peak at 0.8 1170 Hz 800 0.6 700 0.4 peak frequency ratios approx. 600 0.2 3:5 peak at 4:5 710 Hz 3:4 0 500 −0.2 400 −0.4 300 −0.6 200 −0.8 100 −1 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 time (sec.) 600 800 1000 1200 1400 1600 Frequency (Hz) frequency peaks near 710Hz, 890Hz, 1170Hz (N = 12; 880) analog signal to synthesize peak frequencies f (t) = 0:45 sin(2π∗710t)+0:95 sin(2π∗890t)+0:93 sin(2π∗1170t) What is missing from this model? ç ç (quarter note, rest, half note) d minor chord (whole note) Need time& frequency information! Roe Goodman Discrete Fourier and Wavelet Transforms Music engraving by LilyPond 2.14.2—www.lilypond.org Music engraving by LilyPond 2.14.2—www.lilypond.org Wavelet Approach 2 3 sk (0) 6 sk (1) 7 Given: Digital signal s = 6 7 length N = 2k (level k) k 6 . 7 4 . 5 sk (N −1) Haar Wavelet Transform (pyramid algorithm) (sk )even • Downsample sk −! with (sk )odd 2 3 2 3 sk (0) sk (1) 6 sk (2) 7 6 sk (3) 7 (s ) = 6 7,(s ) = 6 7 (length N=2) k even 6 . 7 k odd 6 . 7 4 . 5 4 . 5 sk (N −2) sk (N −1) 1 • Trend (level k − 1) sk−1 = 2 (sk )even + (sk )odd 1 • Detail (level k − 1) dk−1 = 2 (sk )even − (sk )odd • Iterate on trend sk−1 −! [sk−2; dk−2], sk−2 −! · · · Roe Goodman Discrete Fourier and Wavelet Transforms Multiresolution Analysis level−three signal s level−two trend s level−two detail d Example 3 2 2 60 50 15 50 45 10 40 40 35 5 30 30 0 20 25 10 −5 20 0 15 −10 0 1 2 3 4 5 6 7 0 1 2 3 0 1 2 3 s [0] Three-scale analysis pyramid: 0 d [0] level 0 0 s [0] 1 s [1] 1 d [0] level 1 1 d [1] 1 s [0] s [1] 2 2 s [2] s [3] 2 2 d [2] d [3] d [0] d [1] 2 2 level 2 2 2 s [4] s [7] s [0] s [1] s [2] s [3] 3 s [5] s [6] 3 3 3 3 3 3 3 Three-scale multiresolution analysis s3 −! [s0; d0; d1; d2] Roe Goodman Discrete Fourier and Wavelet Transforms Multiresolution Synthesis and Haar Basis 2 3 s0 (3) 6d07 Three-scale multiresolution synthesis s3 = W 6 7 4d15 Haar three-scale synthesis matrix (8 × 8): d2 (3) 4 2 4 6 W = [u0; v0; v1; S v1; v2; S v2; S v2 S v2](S = shift) 213 2 1 3 2 1 3 2 1 3 617 6 1 7 6 1 7 6−17 6 7 6 7 6 7 6 7 617 6 1 7 6−17 6 0 7 6 7 6 7 6 7 6 7 617 6 1 7 6−17 6 0 7 u0 = 6 7 v0 = 6 7 v1 = 6 7 v2 = 6 7 617 6−17 6 0 7 6 0 7 6 7 6 7 6 7 6 7 617 6−17 6 0 7 6 0 7 6 7 6 7 6 7 6 7 415 4−15 4 0 5 4 0 5 1 −1 0 0 trend coarse detail medium detail fine detail Differences between detail vectors for Haar basis and Fourier basis: • localized in time (multiple time scales) • time shifted and rescaled samples of one function (wavelet) Roe Goodman Discrete Fourier and Wavelet Transforms Mathematical Microscope Wave + Step Function + Noise One-scale Haar transform 1 1 0.5 0.5 0 0 −0.5 −0.5 trend s detail d 9 9 −1 −1 256 512 768 1,024 256 512 768 1,024 Two−scale Haar transform Three−scale Haar transform 1 1 0.5 0.5 0 0 −0.5 trend s detail d −0.5 trend s detail d 8 8 7 7 −1 −1 128 256 384 512 64 128 192 256 10 Pyramid algorithm: x −! [s7; d7; d8; d9](N = 2 ) There are many other mathematical microscopes! Roe Goodman Discrete Fourier and Wavelet Transforms Feature Extraction and Signal Compression Three-scale LeGall wavelet transform (used in JPEG 2000 lossless image compression algorithm) 9 signal −! [s6; d6; d7; d8](N = 2 = 512) Signal with Pops and Static Three−Scale Wavelet Coefficients 1.5 5 s6 0 1 −5 10 20 30 40 50 60 2 0.5 d6 0 −2 0 10 20 30 40 50 60 1 d7 0 −0.5 −1 20 40 60 80 100 120 2 −1 d8 0 −1.5 −2 0 50 100 150 200 250 300 350 400 450 500 550 50 100 150 200 250 • Trend s6 shows the low frequency signal content • Time location of pops is clear at each level of detail • Most of the detail coefficients are small (noise) Roe Goodman Discrete Fourier and Wavelet Transforms Multiresolution Decomposition Three level wavelet synthesis of signal: Let Dj = inverse wavelet transform of details dj (j = 8; 7; 6) S6 = inverse wavelet transform of trend s6 512 Then original signal = D8 + D7 + D6 + S6 (each term in C ) 2 1 D8 0 −1 0 100 200 300 400 500 600 2 1 D7 0 −1 0 100 200 300 400 500 600 0.2 D6 0 −0.2 0 100 200 300 400 500 600 2 S 6 0 −2 0 100 200 300 400 500 600 Roe Goodman Discrete Fourier and Wavelet Transforms Wavelet Filtering and Compression Filtering by RemovingFiltering Waveletby Removing Details Wavelet and Noise Details and Noise 2 2 1 1 0 0 −1 −1 original signal original signal −2 −2 0 0100 100200 200300 300400 400500 500600 600 Threshold Compression2 2 1 1 • 97% of detail coefficients in d6, d7 and d8 are less than 0:2.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    19 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us