Notes on Feynman Rules and Scattering

Notes on Feynman Rules and Scattering

Feynman Rules and Scattering Yichen Shi Michaelmas 2013 Note that we use the metric convention (− + ++). 1 Feynman Rules 1. Draw a Feynman diagram of the process and put momenta on each line consistent with momentum conser- vation. 2. Associate with each internal propagator −i (scalar propagator); p2 + m2 − i −i(−p= + m) (fermion propagator); p2 + m2 − i −iη ab (photon propagator): p2 − i 3. Associate vertices with coupling constants obtained from the interaction term in the Lagrangian, and impose momentum conservation 4 (4) X X (2π) δ pin − pout : 4. Integrate over momenta associated with loops, with the measure d4k ; (2π)4 and multiplied by -1 for fermions and 1 for bosons. 5. Add in wavefunction terms for external particles of momentum p and spin s: u(p; s) incoming fermions;u ¯(p; s) outgoing fermions; v¯(p; s) incoming antifermions; v(p; s) outgoing antifermions; ∗ a incoming photons; a outgoing photons: 6. Take into account symmetry factors, which originate from various combinatorial factors counting the different δ ways in which the δJ 's can hit the J's in the path-integral formulation. Note that we look at the Lagrangian for information. For example, if it contains the term gφ ¯γ5 then - gγ5 ) add igγ5 to vertices; - φ ) the propagator is scalar; - ¯ ) particles are fermionic so we need to subtract one diagram from the other when calculating A. 1 2 Examples • Fermion propagating through n vertices labelled a1 to an, emitting a photon at each vertex −i(−p= + m) −i(−p= + m) n 0 0 an n an−1 n−1 an−2 a1 (−ie) u¯(p ; s )γ 2 2 γ 2 2 γ ··· γ u(p; s): pn + m − i pn−1 + m − i • Anti-fermion propagating through n vertices labelled an to a1, emitting a photon at each vertex −i(−p= + m) −i(−p= + m) n an n an−1 n−1 an−2 a1 0 0 (−ie) v¯(p; s)γ 2 2 γ 2 2 γ ··· γ v(p ; s ): pn + m − i pn−1 + m − i • Fermion loop with n vertices emitting photons −i(−p= + m) −i(−p= + m) −i(−p= + m) n an n an−1 n−1 an−2 a1 1 (−ie) γ 2 2 γ 2 2 γ ··· γ 2 2 : pn + m − i pn−1 + m − i p1 + m − i • e−µ− ! e−µ− (photon internal line) −iη (−ie)2u¯ (p0; s0)γau (p; s) ab u¯ (q0; r0)γbu (q; r): e e (p − p0)2 − i µ µ • e−e− ! e−e− (photon internal line) −iη A = (−ie)2u¯ (p0; s0)γau (p; s) ab u¯ (q0; r0)γbu (q; r); 1 e e (p − p0)2 − i e e −iη A = (−ie)2u¯ (p0; s0)γau (q; r) ab u¯ (p0; s0)γbu (q; r): 2 e e (p − p0)2 − i µ µ So due to Fermi-Dirac statistics, A = A1 − A2: And scattering cross-section 2 ∗ ∗ ∗ ∗ jMj = A1A1 + A2A2 − (A1A2 + A2A1): • e−e+ ! µ−µ+ (photon internal line) −iη (−ie)2u¯(p0)γav(q0) ab v¯(q)γbu(p) (p + q)2 − i • Compton scattering e−γ ! e−γ (fermion internal line) −i(−(p= + k=) + m) A = (−ie)2u¯(p0; s0)γb∗ γa u(p; s); 1 b (p + k)2 + m2 − i a 0 −i(−(p= − k= ) + m) A = (−ie)2u¯(p0; s0)γb∗ γa u(p; s): 2 b (p − k0)2 + m2 − i a ) A = A1 + A2: 2 ∗ ∗ ∗ ∗ ) jMj = A1A1 + A2A2 + (A1A2 + A2A1): 2 • Two scalars to two scalars (scalar internal line) −i A = (2π)4δ(p + q − p0 − q0)(−iλ)2 ; 1 (p + q)2 + m2 − i −i A = (2π)4δ(p + q − p0 − q0)(−iλ)2 ; 2 (p − p0)2 + m2 − i −i A = (2π)4δ(p + q − p0 − q0)(−iλ)2 : 3 (p − q0)2 + m2 − i We use Mandelstam variables s = (p + q)2; t = −(p − p0)2 u = −(p − q0)2: Our definitions of A and M have been ambiguous as to whether i(2π)4δ(··· ) is included. I guess A does but M doesn't. Also we defined them to include the factor of i. Some people don't. Anyway, here −i −i −i A = A + A + A := (2π)4δ(p + q − p0 − q0)(−iλ)2 + + : 1 2 3 s + m2 − i t + m2 − i u + m2 − i 3.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    3 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us