
Axially Grooved and Arterial Heat Pipe Testing and Numerical Analysis by Michel Garcia B.Eng., Carleton University A Thesis submitted to the Faculty of Graduate Studies and Research in partial fulfilment of the requirements for the degree of Master of Applied Science Ottawa-Carleton Institute for Mechanical and Aerospace Engineering Department of Mechanical and Aerospace Engineering Carleton University Ottawa, Ontario, Canada April 2006 Copyright © 2006 - Michel Garcia Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Library and Bibliotheque et Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-16458-7 Our file Notre reference ISBN: 978-0-494-16458-7 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet,distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non­ sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these. this thesis. Neither the thesis Ni la these ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent etre imprimes ou autrement may be printed or otherwise reproduits sans son autorisation. reproduced without the author's permission. In compliance with the Canadian Conformement a la loi canadienne Privacy Act some supporting sur la protection de la vie privee, forms may have been removed quelques formulaires secondaires from this thesis. ont ete enleves de cette these. While these forms may be included Bien que ces formulaires in the document page count, aient inclus dans la pagination, their removal does not represent il n'y aura aucun contenu manquant. any loss of content from the thesis. i * i Canada Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. A bstract Testing of an axially grooved and an arterial heat pipe was performed under ambient conditions. Steady-state axial temperature distribution as a function of heat input and sink temperature was determined. Variable inclination testing with 5 W input power was performed to determine the dryout angle. Horizontal testing with variable power input was performed to determine the capillary limit. The effective thermal conductivity of each heat pipe as a function of heat input and sink temperature was determined. Numerical modelling of the axially grooved heat pipe tested was performed. Poiseuille number as a function of contact angle and attachment point was deter­ mined. A capillary limit model was developed based on the groove geometry and external heat pipe dimensions. The parametric study of attachment point and con­ tact angle variation led to the prediction of maximum heat transfer. Satisfactory agreement was found between the experiment and numerical model. iii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Acknowledgment s I would like to thank my supervisor, Professor Tarik Kaya for being there to an­ swer my many questions. Funding provided by CRESTech, MMO, and NSERC was appreciated. I am grateful to the Carleton Mechanical and Aerospace Engineering machine shop and administrative staff who gave me much of their time. I am also thankful to my family and friends for their support. iv Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table of Contents Abstract iii Acknowledgments iv Table of Contents v List of Tables viii List of Figures ix 1 Introduction 1 1.1 Origins............................................................................................................. 1 1.2 Thermodynamic Cycle ................................................................................ 2 1.3 Effective Thermal Conductivity ................................................................ 3 1.4 T esting............................................................................................................. 4 1.4.1 Gravitational Tilt Testing ............................................................. 5 1.5 Importance of the Poiseuille N u m b e r...................................................... 6 1.6 Liquid-Vapour Counterflow.......................................................................... 7 1.7 Modelling of Re-Entrant Grooves ............................................................. 8 1.8 Heat Transfer Lim its................................................................................... 9 1.8.1 Capillary Lim it................................................................................. 10 v Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1.9 Arterial Heat P ip e s ........................................................................................ 11 2 Experimental Investigation 13 2.1 Test Setup Summary.................................................................................... 13 2.2 Experimental Equipment.............................................................................. 14 2.2.1 General S e tu p..................................................................................... 14 2.2.2 Heat P ipes........................................................................................... 15 2.2.3 H e a tin g ............................................................................................... 19 2.2.4 Cooling ............................................................................................... 21 2.2.5 Insulation and S u p p o rt..................................................................... 22 2.2.6 Tilting M echanism ........................................................................... 23 2.2.7 Data A cq u isitio n ............................................................................... 26 2.3 Experimental Process.................................................................................... 30 2.3.1 Steady-State Response..................................................................... 30 2.3.2 Transient R esponse........................................................................... 30 2.3.3 Testing Performed ............................................................................ 30 2.4 Experimental R esu lts.................................................................................... 32 2.4.1 Temporal Temperature Variation................................................... 32 2.4.2 Spatial Temperature V ariation........................................................ 42 2.4.3 Effective Thermal C onductivity ..................................................... 51 2.4.4 Heat B a la n c e ..................................................................................... 53 2.4.5 Inclination T e s tin g ............................................................................ 57 2.4.6 Horizontal Dryout ............................................................................ 59 2.4.7 AHP Heater Location V ariatio n ..................................................... 59 3 Numerical Modelling 68 3.1 Axially Grooved Heat Pipe Capillary Limit T heory ............................. 68 vi Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 3.2 Liquid G roove .................................................................................................. 69 3.2.1 Global Pressure L osses ..................................................................... 69 3.2.2 Groove M odelling ............................................................................... 72 3.3 Governing Equation ....................................................................................... 78 3.3.1 Boundary C onditions......................................................................... 82 3.4 Solving the Governing E q u atio n ................................................................. 85 3.4.1 Finite Difference M odel................................................................... 85 3.4.2 Finite Element Model ................................................................... 90 3.5 Vapour Flow.................................................................................................... 92 3.6 Combining Liquid and Vapour Flow s ....................................................... 93 3.7 Capillary Limit Code S tru c tu re ................................................................ 96 3.8 Numerical R esults......................................................................................... 97 3.8.1 Velocity Fields Resulting from Different Boundary Conditions 98 3.8.2 Contact Angle V ariatio n....................................................................100 3.8.3 Attachment
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages139 Page
-
File Size-