
Single-step synthesis of silver sulfide nanocrystals in arsenic trisulfide Juliana M. P. Almeida,1,2* Chao Lu,1 Cleber R. Mendonça2 and Craig B. Arnold1 1Dep. of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA 2São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13560-970, São Carlos, SP, Brazil * [email protected] Abstract: Silver sulfide nanocrystals and chalcogenide glasses (ChGs) are two distinct classes of semiconductor materials that have been exploited for new infrared technologies. Each one exhibits particular optoelectronic phenomena, which could be encompassed in a hybrid material. However, the integration of uniformly distributed crystalline phases within an amorphous matrix is not always an easy task. In this paper, we report a single step method to produce Ag2S nanocrystals (NCs) in arsenic trisulfide (As2S3) solution. The preparation is carried out at room temperature, using As2S3, AgCl and propylamine resulting in highly crystalline Ag2S nanoparticles in solution. These solutions are spin-coated on glass and silicon substrates to produce As2S3/Ag2S metamaterials for optoelectronics. ©2015 Optical Society of America OCIS codes: (160.2750) Glass and other amorphous materials; (160.3918) Metamaterials; (310.0310) Thin films. References and links 1. A. L. Rogach, A. Eychmüller, S. G. Hickey, and S. V. Kershaw, “Infrared-emitting colloidal nanocrystals: Synthesis, assembly, spectroscopy, and applications,” Small 3(4), 536–557 (2007). 2. X. Michalet, F. Pinaud, T. D. Lacoste, M. Dahan, M. P. Bruchez, A. P. Alivisatos, and S. Weiss, “Properties of fluorescent semiconductor nanocrystals and their application to biological labeling,” Single Molecules 2(4), 261– 276 (2001). 3. M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-ir region,” J. Am. Chem. Soc. 131(49), 17736–17737 (2009). 4. J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011). 5. S. T. Hussain, S. Abu Bakar, B. Saima, and B. Muhammad, “Low temperature deposition of silver sulfide thin films by AACVD for gas sensor application,” Appl. Surf. Sci. 258(24), 9610–9616 (2012). 6. H. Wang and L. Qi, “Controlled synthesis of Ag2S, Ag2Se, and Ag nanofibers using a general sacrificial template and their application in electronic device fabrication,” Adv. Funct. Mater. 18(8), 1249–1256 (2008). 7. A. I. Kryukov, A. L. Stroyuk, N. N. Zin’chuk, A. V. Korzhak, and S. Y. Kuchmii, “Optical and catalytic properties of Ag2S nanoparticles,” J. Mol. Catal. Chem. 221(1-2), 209–221 (2004). 8. Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, and Q. Wang, “Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window,” ACS Nano 6(5), 3695–3702 (2012). 9. G. Hong, J. T. Robinson, Y. Zhang, S. Diao, A. L. Antaris, Q. Wang, and H. Dai, “In Vivo Fluorescence Imaging with Ag2S Quantum Dots in the Second Near-Infrared Region,” Angew. Chem. Int. Ed. Engl. 51(39), 9818– 9821 (2012). 10. A. Tubtimtae, K.-L. Wu, H.-Y. Tung, M.-W. Lee, and G. J. Wang, “Ag2S quantum dot-sensitized solar cells,” Electrochem. Commun. 12(9), 1158–1160 (2010). 11. X. Hou, X. Zhang, W. Yang, Y. Liu, and X. Zhai, “Synthesis of SERS active Ag2S nanocrystals using oleylamine as solvent, reducing agent and stabilizer,” Mater. Res. Bull. 47(9), 2579–2583 (2012). 12. K. Terabe, T. Nakayama, T. Hasegawa, and M. Aono, “Formation and disappearance of a nanoscale silver cluster realized by solid electrochemical reaction,” J. Appl. Phys. 91(12), 10110–10114 (2002). 13. K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono, “Quantized conductance atomic switch,” Nature 433(7021), 47–50 (2005). 14. J.-L. Sun, J.-L. Zhu, X. Zhao, and Y. Bao, “Fabrication and photoconductivity of macroscopically long coaxial structured Ag/Ag2S nanowires with different core-to-shell thickness ratios,” Nanotechnology 22(3), 035202 (2011). #241289 Received 22 May 2015; revised 3 Jul 2015; accepted 13 Jul 2015; published 21 Jul 2015 © 2015 OSA 1 Aug 2015 | Vol. 5, No. 8 | DOI:10.1364/OME.5.001815 | OPTICAL MATERIALS EXPRESS 1815 15. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011). 16. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non- Cryst. Solids 330(1-3), 1–12 (2003). 17. A. B. Seddon, “Chalcogenide glasses - A review of their preparation, properties and applications,” J. Non-Cryst. Solids 184, 44–50 (1995). 18. D. Tsiulyanu and I. Stratan, “On the photodissolution kinetics of silver in glassy As2S3,” J. Non-Cryst. Solids 356(3), 147–152 (2010). 19. S. R. Elliott, “A unified mechanism for metal photodissolution in amorphous chalcogenide materials,” J. Non- Cryst. Solids 130(1), 85–97 (1991). 20. F. Sava, M. Popescu, A. Lorinczi, and A. Velea, “Possible mechanism of Ag photodiffusion in a-As2S3 thin films,” Phys. Status Solidi, B Basic Res. 250(5), 999–1003 (2013). 21. C. Lu, J. M. P. Almeida, N. Yao, and C. Arnold, “Fabrication of uniformly dispersed nanoparticle-doped chalcogenide glass,” Appl. Phys. Lett. 105(26), 261906 (2014). 22. Y. Zha, M. Waldmann, and C. B. Arnold, “A review on solution processing of chalcogenide glasses for optical components,” Opt. Mater. Express 3(9), 1259–1272 (2013). 23. G. C. Chern and I. Lauks, “Spin-coated amorphous chalcogenide films,” J. Appl. Phys. 53(10), 6979–6982 (1982). 24. G. C. Chern and I. Lauks, “Spin coated amorphous chalcogenide films - structural characterization,” J. Appl. Phys. 54(5), 2701–2705 (1983). 25. G. C. Chern, I. Lauks, and A. R. McGhie, “Spin coated amorphous chalcogenide films - thermal properties,” J. Appl. Phys. 54(8), 4596–4601 (1983). 26. Y. Zha, S. Fingerman, S. J. Cantrell, and C. B. Arnold, “Pore formation and removal in solution-processed amorphous arsenic sulfide films,” J. Non-Cryst. Solids 369, 11–16 (2013). 27. M. S. Leon-Velazquez, R. Irizarry, and M. E. Castro-Rosario, “Nucleation and Growth of Silver Sulfide Nanoparticles,” J. Phys. Chem. C 114(13), 5839–5849 (2010). 28. K. Akamatsu, S. Takei, M. Mizuhata, A. Kajinami, S. Deki, S. Takeoka, M. Fujii, S. Hayashi, and K. Yamamoto, “Preparation and characterization of polymer thin films containing silver and silver sulfide nanoparticles,” Thin Solid Films 359(1), 55–60 (2000). 29. R. Chen, N. T. Nuhfer, L. Moussa, H. R. Morris, and P. M. Whitmore, “Silver sulfide nanoparticle assembly obtained by reacting an assembled silver nanoparticle template with hydrogen sulfide gas,” Nanotechnology 19(45), 455604 (2008). 30. C. Tsay, E. Mujagić, C. K. Madsen, C. F. Gmachl, and C. B. Arnold, “Mid-infrared characterization of solution- processed As2S3 chalcogenide glass waveguides,” Opt. Express 18(15), 15523–15530 (2010). 31. C. Tsay, F. Toor, C. F. Gmachl, and C. B. Arnold, “Chalcogenide glass waveguides integrated with quantum cascade lasers for on-chip mid-IR photonic circuits,” Opt. Lett. 35(20), 3324–3326 (2010). 32. T. Wagner, T. Kohoutek, M. Vlcek, M. Munzar, and M. Frumar, “Spin-coated Ag-x(As0.33S0.67)(100-x) films: preparation and structure,” J. Non-Cryst. Solids 326-327, 165–169 (2003). 33. M. S. Iovu, S. D. Shutov, A. M. Andriesh, E. I. Kamitsos, C. P. E. Varsamis, D. Furniss, A. B. Seddon, and M. Popescu, “Spectroscopic studies of bulk As2S3 glasses and amorphous films doped with Dy, Sm and Mn,” J. Optoelectron. Adv. Mater. 3, 443–454 (2001). 34. D. Y. Choi, S. Madden, R. P. Wang, A. Rode, M. Krolikowska, and B. Luther-Davies, “Nano-phase separation of arsenic tri-sulphide (As2S3) film and its effect on plasma etching,” J. Non-Cryst. Solids 353(8-10), 953–955 (2007). 35. P. Nemec, J. Jedelsky, M. Frumar, Z. Cernosek, and M. Vlcek, “Structure of pulsed-laser deposited arsenic-rich As-S amorphous thin films, and effect of light and temperature,” J. Non-Cryst. Solids 351(43-45), 3497–3502 (2005). 36. M. V. Kovalenko, R. D. Schaller, D. Jarzab, M. A. Loi, and D. V. Talapin, “Inorganically Functionalized PbS- CdS Colloidal Nanocrystals: Integration into Amorphous Chalcogenide Glass and Luminescent Properties,” J. Am. Chem. Soc. 134(5), 2457–2460 (2012). 37. S. Novak, L. Scarpantonio, J. Novak, M. D. Pre, A. Martucci, J. D. Musgraves, N. D. McClenaghan, and K. Richardson, “Incorporation of luminescent CdSe/ZnS core-shell quantum dots and PbS quantum dots into solution-derived chalcogenide glass films,” Opt. Mater. Express 3(6), 729–738 (2013). 1. Introduction Semiconductor nanocrystals (NCs) and quantum dots are of great interest for their use in a wide range of applications from optoelectronics to biological systems [1, 2]. In contrast to metallic nanoparticles that have a plasmon band in the visible or UV portion of the spectrum, semiconductor nanocrystals exhibit localized surface plasmon resonances in the infrared region [3, 4] making them promising for infrared metamaterials. Silver sulfide is a direct bandgap semiconductor (Eg ~1 eV), commonly used as a solid-state electrolyte, presenting both ionic and electronic conduction [5, 6]. On account of the quantum confinement effect #241289 Received 22 May 2015; revised 3 Jul 2015; accepted 13 Jul 2015; published 21 Jul 2015 © 2015 OSA 1 Aug 2015 | Vol. 5, No. 8 | DOI:10.1364/OME.5.001815 | OPTICAL MATERIALS EXPRESS 1816 when synthetized at the nanometer scale, indirect transitions have been observed in the range of 0.9 – 1.8 eV and direct transitions are blue shifted, to the range 2.7 – 4.0 eV [7]. Based on these transitions, new applications have been proposed for silver sulfide, such as, NIR emitters for in vivo imaging [8, 9], sensitizers for solar cells [10], and substrates for surface- enhanced Raman scattering (SERS) [11].
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages7 Page
-
File Size-